ADAPTATION OF ECG MACHINE FOR REAL TIME ECG CAPTURE MONITORING

NOOR SHAHIDAWATI BINTI OMAR

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ADAPTATION OF ECG MACHINE FOR REAL TIME ECG CAPTURE MONITORING

NOOR SHAHIDAWATI BINTI OMAR

This Report Is Submitted In Partial Fulfillment Of Requirements For The Bachelor Degree of Electronic Engineering (Industrial Electronic)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka

February 2007

"I treat as valid this report is doing by myself except summary and quotation in every part that I had clear source"

844.2

Signature Name

Date

: Noor Shahidawati Binti Omar : 16 April 2007 "I admit that to have read this report and it has follow the scope and quality in Fulfillment Of Requirements For The Degree Of Bachelor of Electronic Engineering with Honours (Industrial Electronic)"

Aniful

Signature Super visor Name Date

: Miss Norhashimah bt. Mohd Saad : 16 April 2007

To my parents, family members and friends; My all times beloved.

ACKNOWLEDGEMENTS

Alhamdulillah, I finally able to complete the final year project and the thesis as well within the allocated time. First of all, I would like to express our greatest gratitude and sincere thanks to my supervisor, Miss Norhashimah bt. Mohd Saad for her cooperation and involvement from the begining untill the end of my project development. Her effort to ensure the successfull and comfortability of students under her responsibility was simply undoubtful. Thanks for the invaluable advices given before, while and after completion of the project.

Thanks a lot to all FKEKK lecturers because willing to give an opinion and also give me guide for realize this project. Everything idea you all give for me is constructive and help me to solve the technical problem during I do this project.

ABSTRACT

Electrocardiogram (ECG) is a major source for doctors who need the information to diagnose patient's health condition and pathology. The electrocardiograph (ECG) is one of the medical equipment that investigates any heart disease or any cardiac abnormalities. Each portion of the ECG waveform can obtain the patients status prediction whether there are in good condition or not. ECG signal are usually small (approximate 1mv) and carry lot of noise (which are commonly influenced by 50 Hz power supply, by changing of skin electrode contact resistor). This project is to design, analysis and developed a system that can capture a real time ECG signal from patient and can turn the signal or data to pc. To measure the ECG signal, firstly an amplifier and a driven right leg circuit are used to reduce a part of 50 Hz common noise. ECG signals after the instrumentation amplifier will be filtered by a low pass filter to eliminate high frequency noise components, and then filtered by high pass filter to remove the base line drift. The instrumentation amplifier is designed using IC AD620 of Analog Devices Corp.

ABSTRAK

Electrocardiogram (ECG) adalah sumber utama kepada doktor untuk mendapatkan maklumat bagi mendiagnosis patologi dan keadaan kesihatan pesakit. Electrocardiograph (ECG) adalah salah satu alatan perubatan yang digunakan untuk menyelidik apa sahaja jenis penyakit jantung dan keabnormalan kardium jantung. Setiap bahagian pada isyarat gelombang ECG boleh mengenalpasti ramalan status pesakit samada mereka di dalam keadaan yang baik atau tidak. Isyarat ECG biasanya kecil (lebih kurang 1mV) dan memberi banyak gangguan (kebiasaanya dipengaruhi oleh bekalan kuasa 50Hz, oleh pertukaran sentuhan rintangan elektrod). Projek ini adalah untuk merekabentuk, analisis dan membangunkan sistem yang dapat memaparkan masa sebenar isyarat ECG dari pesakit dan terus memaparkan isyarat atau data ke komputer. Untuk menyukat isyarat ECG, pertama sekali penguat dan litar pemacu kaki kanan digunakan untuk mengurangkan gangguan 50Hz. Isyarat ECG selepas penguat instrumentasi akan di tapis oleh frekuensi potong rendah untuk menyingkirkan gangguan komponen frekuensi tinggi dan seterusya di tapis oleh frekuensi potong tinggi untuk menyingkirkan aliran arus pada garis tapak. Penguat instrumentasi direkabentuk menggunakan IC AD620 dari Analog Device Corp.

TABLE OF CONTENTS

CHAPTER	DESC	CRIPTION	PAGE
	PROJ	ECT TITLE	i
	DECLARATION		iii
	DEDICATION		v
	ACKNOWLEDGEMENTS		vi
	ABSTRACT		vii
	ABST	TRAK	viii
	TABI	LE OF CONTENTS	ix
	LIST	OF TABLES	xiii
	LIST	OF FIGURES	xiv
	LIST OF ABBREVIATIONS		xvi
	LIST	OF APPENDIXS	xvii
CHAPTER I	INTR	RODUCTION	
	1.1	Introduction	1
	1.2	Objectives	2
	1.3	Problem statements	3
	1.4	Scope of works	3
	1.5	Project Methodology	3
		1.5.1 Hardware Design	5
		1.5.1.1 Bio-potential Electrodes	5
		1.5.1.2 Bio-instrumentation amplifier design	5
	1.6	Thesis Outline	6

🔘 Universiti Teknikal Malaysia Melaka

CHAPTER II LITERATURE REVIEW

2.1	Introduction		
2.2	The Electricity of the Heart	10	
	2.2.1 The Ventricular cell	13	
	2.2.2 The Cardiac Cell	14	
2.3	The ECG Recording	14	
	2.3.1 The 12 lead ECG	15	
2.4	Electrocardiograph Signal	16	
	2.4.1 ECG Normal Signal Intervals	17	
2.5	Lead Configuration	18	
	2.5.1 Bipolar limb leads	18	
	2.5.2 Unipolar limb leads	19	
	2.5.3 Chest leads	20	
	2.5.4 The right leg connection	22	
2.6	Bio-instrumentation amplifier characteristics	22	
2.7	Bio-potential Amplifiers		

CHAPTER III RESEARCH METHODOLOGY

3.1	Projec	Project methodology	
3.2	Projec	t Plan and Requirement	31
	3.2.1	ECG Details	31
	3.2.2	Components Selection	32
	3.2.3	Construct and Test	32
3.3	Metho	dology Analysis	32
	3.3.1	Circuit design	33
	3.3.2	Bio-instrumentation amplifier circuit.	33

	3.3.3	Instrumentation amplifier circuit.	34
		3.3.3.1 Theory operation of AD620	35
		3.3.3.2 OP97 application	38
	3.3.4	Operational amplifier circuit	40
	3.3.5	Bandpass filter	41
3.4	Projec	ct Design and Implementation	43
	3.4.1	Hardware	43
	3.4.2	Software	44
3.5	Etchir	ng Process	45

CHAPTER IV RESULT AND ANALYSIS

4.1	Introduction	
4.2	Prototype test	49
	4.2.1 Input test	49
	4.2.2 Output test	50
4.3	Hardware Testing	52
	4.3.1 The Function Generator	53
	4.3.2 The Power Supply	54
4.4	Voltage Divider Circuit	55
	4.4.1 Result of analysis	56
	4.4.2 Circuit Analysis	57
4.5	Instrumentation amplifier stage circuit	58
	4.5.1 Result of Analysis	59
	4.5.2 Circuit Analysis	60
	4.5.2.1 AD620 Instrumentation amplifier	61
	4.5.2.2 OP97 operational amplifier	61
4.6	Operational Amplifier Stage Circuit	62

4.6.1	Result of Analysis	63
4.6.2	Circuit Analysis	64

CHAPTER V CONCLUSION AND SUGGESTION

5.1	Discussion	
	5.1.1 Voltage divider circuit design	67
	5.1.2 Bio-instrumentation amplifier circuit design	68
5.2	Problem statements	68
5.3	Conclusion	69
5.4	Project Improvement and Suggestion	69

REFERENCES

70

LIST OF TABLES

NO TITLE

PAGE

2.1	Bipolar limb leads	18
2.2	Unipolar limb leads	20
2.3	The positions of the six chest electrodes labeled V1 to V6	21
2.4	The characteristics of bio-instrumentation amplifier.	22
4.1	List of all various components and their minimum input voltages	54
4.2	Input voltage supply of AD620 and OP97	60
4.3	Comparison between simulation result and calculation result	65
4.4	Absolute maximum ratings for instrumentation amplifier	65
4.5	Absolute maximum ratings for operational amplifier OP97	65
4.6	Absolute maximum ratings for operational amplifier LM741	66

LIST OF FIGURES

NO TITLE

PAGE

2.1	ECG used to diagnosis abnormal heart.	9
2.2	ECG for sports therapy	9
2.3	The heart diagram	10
2.4	Electric Activity from various regions in the Heart	14
2.5	12 lead ECG from a patient with a normally functioning heart.	15
2.6	A general electrocardiogram (ECG) signal waveform.	16
2.7	The Einthoven's Triangle	19
2.8	Unipolar or augmented limb leads	20
2.9	The positions of the six chest electrodes labeled V1 to V6	21
3.1	Project block diagram	28
3.2	block diagram of bio-instrumentation amplifier signal.	28
3.3	The flow of works in this project	30
3.4	Block diagram for project methodology	31
3.5	Bio-instrumentation amplifier schematic circuit	33
3.6	Instrumentation amplifier circuit	34
3.7	Simplied schematic of AD620	37
3.8	Pins connection diagram of AD620	37
3.9	Pin connection diagram of OP97	39
3.10	Operational amplifier circuit	40
3.11	RC highpass filter.	42
3.12	Project PCB Design using Proteus 6.9 SP5 CRACKED	45
3.13	Circuit drawing transition to transparency	46

3.14	Laminated PCB board with thin film and circuit drawing	46
3.15	UV exposure process	47
3.16	PCB board soaking process	47
3.17	Etching process	48
4.1	Voltage divider circuit	50
4.2	Bio-potential amplifiers gains of 1000	51
4.3	Process analysis of project	51
4.4	Block diagram of ECG signal.	52
4.5	Output waveform using oscilloscope	53
4.6	Frequency 60Hz using function generator	54
4.7	The power supply	55
4.8	voltage divider circuit	55
4.9	output waveform 1mV (as input voltage)	56
4.10	voltage divider circuit on the strip board	57
4.11	voltage divider circuit	57
4.12	Instrumentation amplifier circuit	59
4.13	output waveform of instrumentation amplifier stage (AD620 and OP97)	59
4.14	Instrumentation amplifier circuit on the PCB board.	60
4.15	Operational amplifier circuit	62
4.16	output waveform of operational amplifier. (LM741)	63
4.17	Operational amplifier circuit on the proto board.	64

LIST OF ABBREVIATIONS

ECG/EKG	-	Electrocardiograph
DC	-	Direct current
RA	-	Right arm
RL	-	Right leg
LA	-	Left arm
LL	-	Left length
mV	-	mili-volt
SA	-	Sinoatrial
AV	-	Atrial Ventrical
dB	-	decibel
Op amp	-	Operational Amplifier
AD	-	Analog Device
CMRR	-	Common mode rejection ratio

xvi

LIST OF APPENDIXS

NO	TITLE	PAGE
A	Datasheet of AD620	72
В	Datasheet of OP97	93
С	Datasheet of LM741	106

CHAPTER I

INTRODUCTION

1.1 Introduction

Nowadays, the volume of ECG recorded in hospital is increasing because there are so many heart diseases that attack each person in this world. The electrocardiograph (ECG) is one of the medical equipment that can measure the heart rate and produce data from patient heart into a signal in piece of paper. It is not systematic and efficient because the result maybe lost, damage and difficult to save and send to exchanging patients clinical information between health care facility.

The main objective of this project is to analysis and developed a system that can capture a real time ECG signal from patient and can turn the signal or data to pc. The signal form will be displayed on monitor and also printed with a normal printer. It also make easier to receive and transfer data. This project is a step towards the complete fusion of healthcare, the internet and the home. This project aims to improve quality of live people in terms of time saving, cost reduction and medical service quality. An electrocardiogram (ECG) is a recording of the electricity on the body surface generated by the heart. ECG measurement information is collected by skin electrodes placed at designated locations on the body. ECG signals are usually small and they may be corrupted by various kinds of noise: power line interference, electrode contact noise, motion artifacts. So the measurement of ECG signal is a difficult task.

The ECG signals captured by the electrodes are amplified by using the instrumentation amplifier. ECG signals after the instrumentation amplifier may still be affected by noise. Therefore, the next step is to apply a low pass filter for eliminating high frequency noise parts. A high pass filter is used to get rid of DC (direct current) noise components. To reject common noise voltage, an operational amplifier deriving common mode voltage is used to invert the common mode signal and drive it back into the patient through the right leg (Usually called, driven right leg circuit) with the aim of canceling interference.

1.2 Objectives

The objectives of the project consist of:

- 1. To design a bio-instrumentation amplifier that can amplify an ECG signal.
- 2. To analysis and developed a system that can capture a real time ECG signal from patient and can turn the signal or data to pc.
- 3. To analyze type of signal ECG.

1.3 Problem statements

Nowadays, the volume of ECG recorded in hospital is increasing. Most of ECG machine (output waveform) is display on paper ECG and the result cannot save and filing because it can lost and damage. So, it make difficult for doctor to check the result again and patient don't know about their heart related diseases result. So, it is not systematic and efficient because the result maybe lost, damage and difficult to save and send to patient if patient at home. It also will be very helpful to exchanging patient's clinical information between healthcare facilities. This project needs knowledge of amplifier and filter theories to design well balanced circuit. This system is already used. But the system has complicated functions and very high cost. Example: bedside monitor.

1.4 Scopes of Work

- 1. Adaptation of ECG block diagram.
- 2. Focus on hardware only for capture monitoring to amplifier ECG signal. The hardware development includes bio-instrumentation amplifier and filter circuits.
- 3. Focus on lead I, II and III only.
- 4. Three electrodes (RA, LL and RL) as input from the patient's skin. The function of ECG electrode is to convert the ionic potential produced at the surface of body by the bio-electric activity within it, to electronic potentials that can be processed by the ECG machine.

1.5 **Project Methodology**

1) Study about electrocardiography and related physiology

Electrocardiograph is the study of the electrical activity evident on the surface of the body which is a by product of the heart. The heart made up of muscle fibers, which continuously respond to electrical and pneumatic signals. A recording of such activity is called electrocardiogram and is produced electrocardiograph.

2) Analysis and research of ECG block diagram.

Study about ECG amplifier design stage, design decisions are made about the differential gain and the frequency response of the circuit. Each variable is identified by carefully choosing resistor and capacitor values.

- Breadboard testing.
- Component.
- 3) Design the project circuit on the PCB.

This project consists of three phases. Firstly, study about the ECG amplifier design stage. In the ECG amplifier design stages, values for capacitors and resistors are chosen so that have the proper gain and frequency response. These include the resistor in the amplification stages as well as the resistors and capacitors in the filtering stages. ECG amplifier consist an instrumentation amplifier, operational amplifier and a bandpass filter.

The second phases are make analysis for ECG circuit, and software simulation for the output circuit using the MultiSim Software and getting the component to make the testing on the bread board and the output circuit. After all components are already the project component were constructed on the bread board to test the project functionality before proceed on the PCB. If the projects are success on the bread board, then go through to proceed on the PCB circuit.

Thirdly, design the project circuit on the PCB using Proteus 6.9 Software. Then all the components were constructing on the PCB circuit. The complete constructing circuit project must be tested to verify the performance of the system in real time. If the functionality is succeeding, then the finishing will be doing.

1.5.1 Hardware Design

For hardware part involved ECG amplifier and bio-potential electrodes.

1.5.1.1 Bio-potential Electrodes

On the market, it is possible to find several types of electrodes: limb electrodes, floating electrodes, disposable electrodes and pasteless electrodes. In this project, the disposable electrode was used because it provide good contact with the skin and produces minimal noise generated by movement. The gel electrode also used, it is a conductive substance that enhances the signal transfer between the electrodes contacts and the body surface. The placement of electrodes at the correct positions is very important as different positions on the body could give different signal strength. Placement of electrodes on the body is based on Einthovens Triangle.

1.5.1.2 Bio-instrumentation amplifier design

Normal ECG signal present very low amplitude and low frequencies with high common noise voltage. On the other hand, the ECG electrode present very high output impedance. Noise common voltage is high. These characteristics impose that the amplifier must also have very high input impedance, low bias current, low offset voltage and high CMRR (>60dB). The Analog Device AD620 instrumentation that meets those specifications.

The bio-instrumentation amplifier is composed of two stages. The first is instrumentation amplifier (IA). The next stage is the bandpass amplifier. In instrumentation amplifier stage, the Analog Device AD620 instrumentation and operational amplifier was used.

The op amp used in the right-leg common-mode feedback circuit is the OP97, a low power, high precision operational amplifier with extremely high common-mode rejection (114 dB minimum). This circuit applies an inverted version of the commonmode interference to the subject's right leg, with the aim of canceling the interference. The other op amp is LM741, it used to provide gain of 125.

1.6 Thesis Outline

This thesis represent by five chapters. The following is the outline of adaptation of ECG machine for real time ECG capture monitoring in chapter by chapter.

Chapter I: This chapter will focus on brief introduction of the project carried. The important overview or description including the problem statement, project objectives and project scopes are well emphasized in this part.

6

- Chapter II: This chapter will be based on the literature review of the project. It is mainly focused on the electrocardiography and related physiology. It also defined the details of the characteristics and application of bio-instrumentation amplifier design.
- Chapter III: This chapter will explain on the concepts, theories and principles used in order to complete the project. This part consists of the methodology and also the information on research and experiment carried during the project development.
- Chapter IV: This chapter mainly focused on the result and analysis done using the device. All testing and verification result are attached with the aid of figure, table and statistic related to the project.
- Chapter V: This chapter is a complimentary of previous four chapters. It describes on the overall project, discussion and suggestion for the project. All matters arise including the problems and unachieved objectives will be described clearly in this part.