

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Reverse Engineering of Dogbone Mould Into Another Product

Thesis submitted in accordance with the partial requirement of the Universiti Teknikal Malaysia Melaka for the Bachelor of Manufacturing Engineering (Manufacturing Design)

By

Syed Mohd Fadly Bin Syed Hassan

Faculty of Manufacturing Engineering May 2007

C Universiti Teknikal Malaysia Melaka

MALAYSIA MELA	UNIVERSITI	TEKNIKAL M	IALAYSIA MELAKA (UTeM)
	BO	RANG PENGES	SAHAN STATUS TESIS*
JUDUL: R	EVERSE ENGINE	Ering of Dog	GBONE MOULD INTO ANOTHER PRODUCT
SESI PENG	GAJIAN: 2006/20	07	
Saya		SYED MOHD F	ADLY BIN SYED HASSAN
mengaku Perpustak kegunaan	membenarkan to aan Universiti T seperti berikut:	esis (PSM/Sarj eknikal Malays	jana/Doktor Falsafah) ini disimpan di ısia Melaka (UTeM) dengan syarat-syarat
 Tesis a Perpus untuk Perpus antara **Sila t 	adalah hak milik stakaan Universi tujuan pengajia stakaan dibenark i institusi pengaj tandakan (√)	Universiti Tek ti Teknikal Ma n sahaja. kan membuat : ian tinggi.	knikal Malaysia Melaka. alaysia Melaka dibenarkan membuat salinan salinan tesis ini sebagai bahan pertukaran
	SULIT	(Mengandur atau kepen AKTA RAHS	ingi maklumat yang berdarjah keselamatan ntingan Malaysia yang termaktub di dalam SIA RASMI 1972)
	TERHAD	(Mengandur oleh organi	ingi maklumat TERHAD yang telah ditentukan isasi/badan di mana penyelidikan dijalankan)
\checkmark	TIDAK TERHAD		Disahkan oleh:
(Т	ANDATANGAN P	ENULIS)	(TANDATANGAN PENYELIA)
Alamat 58 TAMA 05350 Al KEDAH.	Tetap: N MULIA, JALAN LOR STAR,	UDA,	Cop Rasmi:
Tarikh:			Tarikh:
* Tesis dimaksu disertasi bagi p ** Jika tesis ini dengan menyat	udkan sebagai tesis pengajian secara ko SULIT atau TERHA takan sekali sebab	bagi Ijazah Dok erja kursus dan _I D, sila lampirka dan tempoh tes Universiti Teknik a	ktor Falsafah dan Sarjana secara penyelidikan, atau penyelidikan, atau Laporan Projek Sarjana Muda (PSM an surat daripada pihak berkuasa/organisasi berkenaar sis ini perlu dikelaskan sebagai SULIT atau TERHAD. Kal Malaysia Melaka

APPROVAL

This thesis submitted to the senate of UTeM and has been accepted as partial fulfillment of the requirement for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design). The members of the supervisory committee are as follow:

.....

Main Supervisor (Official Stamp & Date)

DECLARATION

I hereby, declare this thesis entitle "Reverse Engineering of Dogbone Mould into Another Product" is the results of my own research except as cited in the reference.

Signature	:
Author's Name	: SYED MOHD FADLY BIN SYED HASSAN
Date	: 16 MAY 2007

ABSTRACT

The reverse engineering terms is very familiar to re-design the product existed. Most of the product existing nowadays starts from the research in *reverse* engineering study. There are a lot of advantages in this field such as the cost and time can be reduce in product manufacture and also we can integrate the product into a high level usage after a few research been made. Reverse Engineering consist a few important factors such as *measuring*, *re-design*, *designing a new parts using* CAD sofware, analyzing, and CAM (Computer Aided Manufacturing). In this project, the scope mostly is to *reverse engineering* the current Dogbone Mould by producing another mould of another product which is plastic keris. The structure of runner of this plastic keris mould has been modified in order to get the optimized results. There are two types of plastic materials that used in this research which is Polypropylene High-Flow and Polypropylene Low-Flow. Analysis has been done and the most optimized parameters for Polypropylene High-Flow is 260°C for Melting Temperature and 20°C for Mold Temperature with the time of injection 2.65 second. As for Polypropylene Low-Flow, the Melting Temperature and Mold Temperature is the same as Polypropylene High-Flow and the injection time is 1.52 second. CAM simulation has been made for the plastic keris mould and the results for core is achieved only for the cavity there are a minor correction has to be made into a secondary processes.

Keywords: Reverse Engineering, measuring, re-design, designing a new parts using CAD (Computer Aided Design) software, analyzing, and CAM (Computer Aided Manufacturing)

DEDICATION

Specially dedicated to; My beloved Father, Syed Hassan Bin Syed Ibrahim and My Mother, Nor Ashikin Binti Shuib who are very concern, understanding, patient and supporting. Thanks for everything. To My Sisters, All My Friends, and My Love Ones, I also would like to say thanks. The Work and Success will never be Achieved without All of you.

ACKNOWLEDGEMENTS

In The Name of Allah Almighty And The Most Merciful and Blessings Be Upon His Messenger Prophet Muhammad S.A.W and His Companions.

Assalamualaikum w.b.t.

I am thankful to Allah the almighty for his divine inspirational guidance, which had helped me in completing this final year project. I would like to convey my sincere thanks to my supervisor, Mr. Zolkarnain bin Marjom for his constructive guidance and patience in fulfilling our aspiration in completing this project. I would like to thanks to technicians involved; Mr. Jaafar bin Lajis, Mr. Nor Fauzi bin Tamin and Mr. Hairmi bin Othman for their explanation, experiment and demonstration of the lab equipments and machineries regarding to this lab work. Finally, to my family and friends for their support and understanding during the completion this final year project report.

Last but not least, I would like to thank all those who had contributed to my final year project, directly or indirectly.

Wassalam.

Syed Mohd Fadly Bin Syed Hassan

C Universiti Teknikal Malaysia Melaka

TABLE OF CONTENTS

Dedicationii Acknowledgementiii Table of Contentsiv List of Tablesviii List of Figuresix List of Abbreviations, Symbols, Specialized Nomenclaturexiv	Abstract	i
Acknowledgementiii Table of Contentsiv List of Tablesviii List of Figuresix List of Abbreviations, Symbols, Specialized Nomenclaturexiv	Dedication	ii
Table of Contents iv List of Tables viii List of Figures ix List of Abbreviations, Symbols, Specialized Nomenclature xiv	Acknowledgement	iii
List of Tables	Table of Contents	iv
List of Figuresix List of Abbreviations, Symbols, Specialized Nomenclaturexiv	List of Tables	viii
List of Abbreviations, Symbols, Specialized Nomenclature xiv	List of Figures	ix
	List of Abbreviations, Symbols, Specialized Nomenclature	xiv

1. INTRODUCTION

;
5
5
5

2. LITERATURES REVIEW

2.1 Introduction	.8
2.2 Reverse Engineering	. 8
2.3 Researches Related to Reverse Engineering	.9
2.4 Applications Using Reverse Engineering	10
2.5 Equipment in Reverse Engineering	11
2.5.1 CMM	.11
2.5.2 Vernier Caliper	.12
2.6 Process in Reverse Engineering	.12
2.7 Mould Making Process	13
2.7.1 CAD Design Team	.15
2.7.2 NC Programming Team	.15
2.7.3 Mould Manufacturing Team	.16

2.8 Product Identification	17
2.8.1 Dogbone	17
2.8.2 Dogbone Mould	19
2.8.2.1 Dogbone Core	19
2.8.2.2 Dogbone Cavity	22
2.9 Summary	24

3. METHODOLOGY

3.1 Introduction	25
3.2 Process in Reverse Engineering	25
3.3 The Flow of the Process	26
3.4 Measurement Process	28
3.4.1 Introduction to CMM	28
3.5 Part Design	30
3.5.1 Software Used in Reverse Engineering	30
3.5.2 Introduction to SolidWorks	30
3.5.3 Mould Design	
3.5.3.1 Mould Design Using SolidWorks Software	ware 32
3.5.3.1.1 Method 1	32
3.5.3.1.2 Method 2	33
3.5.4 Analysis	33
3.5.5 CAM (Computer Aided Manufacturing)	

4. THE MOULD DESIGN PROCESS

4.1 Design of the Core and Cavity	35
4.1.2 Identify the Dogbone Cavity	36
4.1.3 Identify the Dogbone Core	37
4.2 'Keris' Design Procedures	
4.2.1 'Keris' Part Design	38
4.2.1.1 Extruded Boss/Base	39
4.2.1.2 Fillet	
4.2.1.3 Draft	44

C Universiti Teknikal Malaysia Melaka

4.3 Plastic Keris Mould Design40	6
4.3.1 Gates and Runners 40	6
4.3.1.1 Extruded Boss/Base	7
4.3.1.2 Swept Boss/Base48	8
4.3.2 Injection Location49	9
4.3.2.1 Extruded Cut50	0
4.3.2.2 Reference Geometry	2
4.3.3 Mould Base Design50	6
4.3.3.1 Mould Base	7

5. ANALYZING THE PROCESS OF REVERSE ENGINEERING

5.1 Introduction	61
5.2 Analysis on the Injection Time Required	61
5.3 Analysis for the Plastic Keris Product	62
5.4 Procedures of Moldflow Analysis	64
5.5 Results of the Mold flow of Plastic Keris	69
5.5.1 Results for PP High-flow	69
5.5.2 Results for PP Low-flow	80
5.5.3 Identify the Results	90
5.5.3.1 Results on New Improved Part on	
PP High-flow	92
5.5.3.2 Results on New Improved Part on	
PP Low-flow	93
5.5.3.3 Summary	94

6. MACHINING PROCESS

6.1 Introduction	.95
6.2 Process Plan	95
6.3 Machining Procedures	96
6.3.1 Calculation of Spindle Speed and Feed Rate	.99
6.3.2 Machining Procedure of Core	. 100
6.3.3 Machining Procedure of Cavity	108

|--|

7. DISCUSSION

7.1 Introduction1	26
7.2 Data collection of Measurement Dogbone Core and Cavity1	26
7.3 Analysis on the Plastic Keris Part	27
7.4 Machining Process	27

8. CONCLUSION

8.1 Conclusion	. 129
8.2 Recommendation and Future Works	130

REFERRENCES	131
-------------	-----

APPENDICES

- A Tables of Cutting Speed and Feed per tooth
- B G-Code for Core Manufacturing
- C G-Code for Cavity Manufacturing
- D Core
- E Cavity
- F Assemble

LIST OF TABLES

3.1	CMM machine specification)
5.1	Experiment Parameters for PP High-flow	3
5.2	Experiment Parameters for PP Low-flow63	3
5.3	Summary Results of PP High-flow79)
5.4	Summary Results of PP Low-flow)
5.5	Summary Results of PP High-flow (New Improved Part)94	1
5.6	Summary Results of PP Low-flow (New Improved Part)94	1
6.1	Process Plan for Core	3
6.2	Process Plan for Cavity10)9

LIST OF FIGURES

2.1	Mould Manufacturing Flowchart	14
2.2	Summary of process flow during the mould manufacturing	16
2.3	Dogbone	17
2.4	Dimension of Dogbone	18
2.5	Core for Dogbone	19
2.6	Plates in Core	20
2.7	Top view of Core	20
2.8	Front View of Core	21
2.9	Cavity	22
2.10	Parts in Cavity	22
2.11	Top view of Cavity	23
2.12	Front view of Cavity	23
3.1	Flow chart of the process	
3.2	Guide Pins, Guide Pins Holes and Ejector Pins	28
3.3	CMM machine type Wenzel LH 54	29
4.1	Dogbone with runners	35
4.2	Plastic Keris re-designed	36
4.3	Drawing of Dogbone Cavity	36
4.4	Location of Pin Hole	37
4.5	Location of guide pin hole in Dogbone Cavity	
4.6	Flow Chart for Keris Part Design	38
4.7a	Sketch of the Keris blade	39
4.7b	Extruded Boss/Base of Keris Blade	40
4.8a	Sketch Location of Neck	40
4.8b	Extruded Boss/Base of Neck Sketch	41
4.9a	Location Sketch of Handle	41

4.9b	Extruded Boss/Base of Handle	
4.10	Edge Fillet of 5mm	43
4.11a	Neutral Plane (Pink) and Draft Face (Green)	44
4.11b	Draft Result	44
4.12	Copy of Keris Product	45
4.13	Flow Chart for Gate and Runner design	46
4.14a	Location of Gate Sketch	47
4.14b	Extruded Boss/Base of Gate	47
4.15a	Sketch of Runner Location	48
4.15b	Path	48
4.15c	Runner	49
4.16	Flow Chart for Injection Location Design	49
4.17a	Extruded Cut Sketch Location	
4.17b	Extruded Cut	50
4.18a	Circle Sketch Location	51
4.18b	Extruded Boss/Base 2 Direction 4mm and 7mm	51
4.19	Right Plane (Green) and Reference Plane (Yellow)	
4.20a	Location of the semicircle sketch	53
4.20b	Semicircle Sketch is Extruded Boss/Base to 12mm	53
4.20c	Injection Location	
4.21	Plastic Keris (Top)	54
4.22	Plastic Keris (Bottom)	55
4.23	Flow Chat for Keris Mould Design	56
4.24	Mould Base	
4.25	Location of the keris inside the Mould Base	58
4.26	Cutting Plane (red plane) of the keris Mould	58
4.27	Core	59
4.28	Cavity	59
4.29	Assemble of Cavity and Core	60
4.30	Transparent View of Assemble Core and Cavity	60

5.1	Mouldflow analysis	64
5.2	Injection Location Selecting	65
5.3	Material Selecting	66
5.4	Mold Temperature and Melting Temperature	67
5.5	Results	68
5.6a	Experiment 1 Analysis Results (PP High-flow)	69
5.6b	Experiment 1 Moldflow Analysis Results (PP High-flow)	70
5.7a	Experiment 2 Analysis Results (PP High-flow)	70
5.7b	Experiment 2 Moldflow Analysis Results (PP High-flow)	71
5.8a	Experiment 3 Analysis Results (PP High-flow)	71
5.8b	Experiment 3 Moldflow Analysis Results (PP High-flow)	72
5.9a	Experiment 4 Analysis Results (PP High-flow)	72
5.9b	Experiment 4 Moldflow Analysis Results (PP High-flow)	73
5.10a	Experiment 5 Analysis Results (PP High-flow)	73
5.10b	Experiment 5 Moldflow Analysis Results (PP High-flow)	74
5.11a	Experiment 6 Analysis Results (PP High-flow)	74
5.11b	Experiment 6 Moldflow Analysis Results (PP High-flow)	75
5.12a	Experiment 7 Analysis Results (PP High-flow)	75
5.12b	Experiment 7 Moldflow Analysis Results (PP High-flow)	76
5.13a	Experiment 8 Analysis Results (PP High-flow)	76
5.13b	Experiment 8 Moldflow Analysis Results (PP High-flow)	77
5.14a	Experiment 9 Analysis Results (PP High-flow).	77
5.14b	Experiment 9 Moldflow Analysis Results (PP High-flow)	78
5.15a	Experiment 1 Analysis Results (PP Low-flow)	80
5.15b	Experiment 1 Moldflow Analysis Results (PP Low-flow)	80
5.16a	Experiment 2 Analysis Results (PP Low-flow)	81
5.16b	Experiment 2 Moldflow Analysis Results (PP Low-flow)	81
5.17a	Experiment 3 Analysis Results (PP Low-flow)	82
5.17b	Experiment 3 Moldflow Analysis Results (PP Low-flow)	82
5.18a	Experiment 4 Analysis Results (PP Low-flow)	83
5.18b	Experiment 4 Moldflow Analysis Results (PP Low-flow)	83
5.19a	Experiment 5 Analysis Results (PP Low-flow)	84

5.19b	Experiment 5 Moldflow Analysis Results (PP Low-flow)
5.20a	Experiment 6 Analysis Results (PP Low-flow)
5.20b	Experiment 6 Moldflow Analysis Results (PP Low-flow)
5.21a	Experiment 7 Analysis Results (PP Low-flow)
5.21b	Experiment 7 Moldflow Analysis Results (PP Low-flow)
5.22a	Experiment 8 Analysis Results (PP Low-flow)
5.22b	Experiment 8 Moldflow Analysis Results (PP Low-flow)
5.23a	Experiment 9 Analysis Results (PP Low-flow)
5.23b	Experiment 9 Moldflow Analysis Results (PP Low-flow)88
5.24	New Improve Runner91
5.25a	Experiment 7 Analysis Results
	(New Inprove Part PP Hgh-flow)
5.25b	Experiment 7 Moldflow Analysis Results
	(New Inprove Part PP Hgh-flow)
5.26a	Experiment 7 Analysis Results
	(New Inprove Part PP Low-flow)
5.26b	Experiment 7 Moldflow Analysis Result
	(New Inprove Part PP Low-flow)
6.1	Flow chat for machining core
6.2a	Facing Operation for core101
6.2b	Facing result for core101
6.3a	Squaring for core102
6.3b	Squaring Results for core102
6.4a	Slotting for core
6.4b	Slotting Result for core
6.5a	Centre Drilling for core104
6.5b	Centre Drilling results for core104
6.6a	Drilling 10mm for core105
6.6b	Drilling 10mm results for core105
6.7a	Drilling 20mm for core106
6.7b	Drilling 20mm results for core106

6.8a	Drilling 12mm for core107
6.8b	Drilling 12mm result for core107
6.9	Flow Chart Machining for Cavity108
6.10a	Facing for cavity112
6.10b	Facing result for cavity112
6.11a	Squaring for cavity113
6.11b	Squaring results for cavity113
6.12a	Centre drilling for cavity114
6.12b	Centre drilling results for cavity
6.13a	Drilling 10mm for cavity115
6.13b	Drilling 10mm results for cavity115
6.14a	Drilling 20mm for cavity116
6.14b	Drilling 20mm results for cavity116
6.15a	Drilling 12mm for cavity117
6.15b	Drilling 12mm results for cavity117
6.16a	Slotting for cavity
6.16b	Slotting results for cavity
6.17a	Drilling 6mm for cavity119
6.17b	Drilling 6mm result for cavity119
6.18a	Keris profile roughing for cavity120
6.18b	Keris profile roughing result for cavity
6.19a	<i>Keris</i> profile finishing for cavity121
6.19b	Keris profile finishing results for cavity
6.20a	Draft roughing for cavity
6.20b	Draft roughing results for cavity
6.21a	Draft finishing for cavity
6.21b	Draft finishing results for cavity
6.22	Generate NC Code Interactively
6.23	Selection of HAAS Controller
7.1	Unfinished Machining

LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

CAD	-	Computer Aided design
CAM	-	Computer Aided Manufacturing
FR	-	Feed Rate
RE	-	Reverse Engineering
SS	-	Spindle Speed

CHAPTER 1 INTRODUCTION

1.1 Research Background

Reverse engineering (RE) is a process for capturing the geometry of parts/tools, and to generate a conceptual numerical model that could be utilized by computer-aided engineering (CAE) and computer-aided manufacturing (CAM) systems. (Custodio, 2001).

RE is used in different areas of design and manufacturing. In the automotive industry it is often necessary to change the shape of the prototype during the manufacturing process. The changes have to be then considered in the drawing and in the geometric model of some parts in computer-aided design (CAD) system. It is associated with the measurements of the part surface and its approximation. Reverse engineering of mechanical parts requires extraction of information about an instance of a particular part sufficient to replicate the part using appropriate manufacturing techniques. Computer vision techniques applied to three-dimensional (3D) data acquired using non-contact, three-dimensional position digitizers have the potential for significantly aiding the process. (Thompson and Henderson, 1999).

RE is the process of taking something (a device, an electrical component, a software program, etc.) apart and analyzing its functionality in depth, usually with the intention to construct a new device or program that does the same thing without actually copying anything from the original. RE is commonly done to avoid copyrights on desired functionality and may be used for avoiding patent law, though this is a bit risky: patents apply to the functionality, not a specific implementation of it. (Anonymous, 2007a)

RE is increasingly popular as manufacturers rush to meet the demands of reducing the product development time. A toolmaker can reduce the time needed to manufacture a tool and die by scanning the product or model and export the scanned data in a relevant file format for RP or to a computer numerical control (CNC) to machine the part. There are three basic steps in RE:

- The collection of the raw data of the object, it can be by a measurement machine (CMM) or a 3D scanner.
- Use a RE software to manipulate this raw data and convert it into a usable form.
- Transfer the usable data into 3D application software like CATIA or Solid Works.

The purpose of this research is to used the RE approach by using the Dogbone Mould to produce another product. Using only the system of the Dogbone Mould to produce another product which is *keris* (usually used as a decoration or a letter opener). The Dogbone is a specimen made from plastic which used in the UTM (Universal Testing Machine) to measure the tensile strength of plastic and its behavior. The most important features that need to examine on the Dogbone Mould is the location and diameters of every Guide Pins and Ejector Pins in it. A mould has several different types of plates which consists sprue and the runner of the mould. The main part is the core and the cavity of the mould. These two parts are the only parts that need to be re-designed in order to produce another product.

The research of this study involved the application of reverse engineering in producing plastic *keris* mould for plastic injection molding. The main focus of this study is the methodology and the application of reverse engineering in a real situation of product development. The process will follow normal reverse engineering steps and procedure and also will look on ways to produce a new product by taking an existing part as a reference. In this study, the main property to be identified is a design process on how to produce the plastic *keris*. By taking the product properties it will then identify the manufacturing process involved in plastic injection mold making. Therefore, the reverse engineering application is find out how to produce the plastic *keris* by redesign the core and the cavity of the Dogbone Mould.

1.2 Importance and Benefits of Research

Most of the organization facilities are theoretically claimed to have the facilities to follow in the development of mold making. Reverse engineering are known as an important element in product development. By combining reverse engineering and mold making techniques the facilities can be utilize and tested on its capabilities of producing mold by applying a combination of CAD capabilities, measurements tools and other resources possible.

The purpose of this study is to develop and redesign a core and the cavity for a plastic *keris* and to analyze the manufacturing process and its requirement of the product or part being study. Using an existing Dogbone core and cavity as a benchmark to produce another core and cavity for the plastics *keris*. Most of the purpose is to know the reverse engineering application in producing the parts of the mold for injection molding.

The reverse engineering application in some of the industry needs a high cost in term of machining and its equipments. It is also a barrier for the industry to redesign an existing product as their own manufacturing product. The product existed needs a reverse engineering process to find the actual process of design and the manufacturing process implemented on it. Therefore, by taking reverse engineering as a method to get close the manufacturing of the product, the cost of the product can be reduced. For this case the re-designed process is only the core and cavity of the Dogbone Mould. If the process is verified accurate then the mold can be manufactured and they can produce without depending on other organizations to fabricate or to purchase a mold.

Nowadays, with the knowledge in engineering field some of the components and part can be re-engineered to improve and developed their usage in manufacturing process. There are many advantages of using reverse engineering especially for a product of injection molding: (Bradley, 1998).

- i) The mold manufacturing and fabrication process can be reveal.
- ii) Overcome a problem occur at the old design during the designing process.
- Can reduce cost and mold can be fabricate by own after knowing the procedure.
- iv) Results from the research can improve the level of productivity plastic process industry.
- v) To identify the possibilities of reducing the cost of producing mold fabrication.
- vi) To develop the capabilities of mold making fabrication process.

vii) To create opportunity to increase the utilization of CAD software, increasing equipments and machines.

1.3 Objectives of the Research

The objectives of this study are:-

- To apply the reverse engineering method in a real situation and implementing it by using measurements tools and equipments, CAD and CAM applications.
- 2. To design a new mould based on the Dogbone Mould criteria.
- 3. Analyze the new mould to determine the optimum parameters and filling condition.
- 4. Re-design the mould based on analysis results.
- 5. Conduct a CAM simulation to determine the machining condition.

1.4 Scopes of the Research

To fulfill the objective goals, there are several equipment will be used during this research. The Dogbone Mould is a 2 piece mould type and it is used in the UTeM's Injection Mould Machine (ARBURG Allrounder 420C). The core and cavity of Dogbone Mould will the measured by using the CMM (Coordinated measuring Machine). CMM is actually a contact measuring machine using probe as a contact device to measure point by point into the product. The collection of raw data of measure of the core and cavity by CMM will be used as a guide to produce another core and cavity for another product.

The raw data of measurement for the core and cavity then will be used in CAD (Computer Aided Design) software to develop 3-D solid modeling for the core and cavity. The software that will be used during this research is SolidWorks and CATIA (<u>Computer Aided Three-dimensional Interactive Application</u>).

After the re-designed of core and cavity has been made, the solid modeling data will be transform into CAM programming (Computer Aided Manufacturing) to manufacture the core and cavity. The CAM programming can be done using the CATIA software. The simulation data will be converted into NC codes using the HAAS parameters.

1.5 Thesis Organization

Chapter 1 - Introduction

The overall review of this research is mentioned in this chapter. The important and benefit, objective and scopes of this research are also describe in this chapter.

Chapter 2 – Literature Review

This chapter describe about the source and the history of the research which had been done by others in reverse engineering field and the methods that had being used by them

Chapter 3 – Methodology

This chapter shows how the process of reverse engineering being applied according to the equipments and methods used

Chapter 4 – The Mould Design Process

This chapter shows the steps procedures starting from the part design until the mould design.