

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

INVESTIGATION ON THE EFFECT OF HEAT TREATMENT ON FRACTURE TOUGHNESS OF PRESURE VESSEL STEEL

This report submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (Utem) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) with Honours.

by

ISMAIL BIN BOLONG

FACULTY OF MANUFACTURING ENGINEERING MEI 2009

	UNIVERSITI TEKNIKAL MALAYSIA MELAKA
	BORANG PENGESAHAN STATUS LAPORAN PSM
	JUDUL:
Inve	stigation on the Effect of Heat Treatment on Fracture Toughness of
	Pressure Vessel Steel

SESI PENGAJIAN:

Semester 2 2008/2009

Saya <u>ISMAIL BIN BOLONG</u> mengaku membenarkan lap di Perpustakaan Universiti T kegunaan seperti berikut:	oran PSM / tesis (Sarjana/Doktor Falsafah) ini disimpan Feknikal Malaysia Melaka (UTeM) dengan syarat-syarat		
 Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM / tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. 			
4. 5. *Sila tandakan (√)			
SULIT TERHAD TIDAK TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)		
(ISMAIL BIN BOLONG)	(EN. MOHAMAD HAIDIR BIN MASLAN)		
Alamat Tetap: S.K Pasir Putih, Peti Surat 1116, 91036, Tawau, Sabah.	Cop Rasmi: MOHAMAD HAIDIR BIN MASLAN Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka		
Tarikh: 27/5/09	Tarikh: 27/5/09		

* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Investigation on The Effect of Heat Treatmen on Fracture Toughness of Pressure Vessel Steel" is the results of my own research except as cited in references.

Signature Author's Name Date

:

:

:

ISMAIL BIN BOLONG

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Process) with Honors. The member of the supervisory committee is as follow:

(Signature of Supervisor) Hnie

(Official Stamp of Supervisor) MOHAMAD HAIDIR PIN MASLAN Pensyar ** Fakulti Kejuruteras *** ** uatan Universiti Teknikal Musur *** Melaka

C Universiti Teknikal Malaysia Melaka

ABSTRACT

Structural failure by fracture toughness in pressure vessel steel A516 Grade 70 of low carbon steel can have severe consequences in term of heat treatment. Fracture toughness K_{IC} test is used to examine the toughness of each specimen after heat treatment process done. In this research, the most common type of this term is discussed and analyzed. The types of heat treatments that have been done like tempering on 400°C, quenching in water, normalizing and full annealing. The structural after heat treatment exposed to change the mechanical properties to this material. Resulting from these changes affected the fracture toughness K_{IC} value. The methodologies were used such as Scanning Electron Machine and Axioscope Zeiss Optical Microscope to examine the microstructure by 50x magnification. Vickers Hardness and Tensile Test also were used to observe the mechanical properties of each specimen. Fracture toughness K_{IC} value is obtained by using Instron Machine. As result, K_{IC} graph show that tempering heat treatment make specimen tougher, hard and high strength compare to full annealing, normalizing and base metal. But, this specimen has low ductile and brittle.

ABSTRAK

Kegagalan tanki keluli pada bahan A516 kelas 70 metal yang mempunyai karbon yang rendah dapat dikesan daripada proses rawatan haba. Semua sampel yang telah mengalami proses rawatan haba akan diuji untuk menentukan kekuatan bahan tersebut daripada retak menggunakan ujian K_{IC} . Dalam kajian yang telah dijalankan, terdapat beberapa jenis rawatan haba yang telah dibuat ke atas bahan A516 kelas 70 seperti, pembajaan pada suhu 400 darjah celcius, sepuh lindap kejut menggunakan air, penormalan dan juga penyepuhlindapan didalam relau. Hasil daripada rawatan haba ini telah merubah struktur sampel dan juga sifat mekanikal. Seterusnya ini akan memberi kesan terhadap perbezaan nilai kekuatan retakan K_{IC}. Mesin Imbasan Elektron dan Optik Mikroskop telah digunakan untuk melihat struktur dalaman pada sampel. Nilai pembesaran yang digunakan untuk semua sampel adalah 50x0.70. Mesin Instron pula digunakan untuk mendapatkan nilai kekuatan sampel yang hendak diuji daripada retak. Ujian kekerasan dan juga ujian ketegangan turut dijalankan untuk mengenalpasti sifat mekanikal yang terdapat pada sampel ini. Graf K_{IC} telah menunjukkan bahawa rawatan haba pembajaan telah menjadikan sampel lebih kuat dan k eras berbanding yang lain. Namun begitu, rawatan jenis ini membuatkan sampel lemah dari segi kelikatan dan rapuh apabila mencapai pada satu tahap

DEDICATION

I dedicate this report especially to UTeM, to my supervisor, to my parents and my family. Never forget to my friends and to all people that help and support me during my completion of this report.

ACKNOWLEDGEMENT

For the first words in this research, I want to gratitude to god, most gracious and merciful to show me guidance in accomplishing this research. Without His help and consent, I could not finish this final year project based one. Actually this topic is recommendation by one person where he is very interested and committed to know something why the problem of this topic still happened until now. What I am learned from this person, he didn't never give up to give their supported, time spending, knowledge about this project, guidance and what ever to ensure this research done and achieve based on the objective in chapter 1. Million of thanks for everything and a special acknowledgment for what I mean is Mr. Mohamad Haidir Bin Maslan as a UTeM lecturer and also as a project supervisor. I wish to express my appreciation also to Dr. Mohd Warikh Bin Abd Rashid as an examiner for guiding and sharing some ideas for improve my project report.

In this opportunity also, my thanks to the UTeM technician who involved direct or indirectly in assisting me start from coming material until the result of this experiment obtained. Never forget to all library staff for their helping such as given information to easy to find the manufacturing books, journal, ASTM standard and what else I want to complete this research. Didn't forget also to University Technology Malaysia Skudai Johor (UTM) because of their cooperation to allowed me to used their equipment like Instron Machine. The most important of my appreciation is to my parents and family. Lastly to all my friends who give their morale support and sharing this challenging time and beautiful life together.

TABLE OF CONTENTS

Abstract	i
Abstrak	ii
Dedication	iii
Acknowledgement	iv
Table of Content	v
List of Tables	viii
List of Figures	ix
List of Abbreviations	xii

1. INTRODUCTION

1.1	Problem Statement	02
1.2	Objective	03
1.3	Scope of Project	03

2. LITERATURE REVIEW

2.1	Introduction of Pressure Vessel Steel	04
2.2	Structural and Material Considerations	.05
2.3	Pressure Vessel Steel	.06
2.3.1	ASTM A516 Grade 70 or ASME SA 516	07
2.4	Steels	.08
2.5	Heat Treatment	11
2.5.1	Objective of Heat Treatment	11
2.5.2	Principles of Heat Treatment of Steel	13
2.5.2.1	The Fe-C Phase Diagram	.13
2.5.2.2	Transformation Diagrams	.20
2.5.2.3	Kinetics of Phase Transformations	.21
2.6	Types of Heat Treatment Steel	.22
2.7	Introduction for Fracture Toughness	.29
2.7.1	General Fracture Toughness Behavior	.32
2.7.2	Types of Specimen Configuration	.33

2.8	Fracture Toughness Testing	.34
2.8.1	Linear-Elastic Fracture Toughness	.35
2.9	Fracture Mechanics	.37
2.9.1	Linear-Elastic Fracture Mechanic	.39
2.9.1.1	Crack Tip Stress	.39
2.9.2	Pre-Cracking	.41

3. METHODOLOGY

3.1	Introduction	43
3.2	Research and Design for This Project	44
3.3	Sample Preparation	45
3.4	Machining Equipment	45
3.4.1	Contour Bent Saw Machine	46
3.4.2	Milling Machine	46
3.4.3	Wire EDM Cutting Machine	48
3.5	Heat Treatment Process	49
3.5.1	Austenite Treatment Phase	49
3.5.2	Tempering	
3.5.3	Quenching	51
3.5.4	Annealing	52
3.5.5	Normalizing	52
3.6	Testing of Sample Material A516 Grade 70	53
3.6.1	Fracture Toughness ASTM 399-90	53
3.6.1.1	Parameter of Jig, clip gauge (COD) and specimen	54
3.6.2	Hardness Vickers Test	56
3.6.3	Microstructure Analysis	
3.6.4	Fractography Analysis	58
3.6.5	Tensile Test	60

4. RESULTS AND DISCUSSIONS

Tensile Result	.61
Heat Treatment	62
Microstructure Analysis on Heat Treatment Process	.63
Base Metal A516 Grade 70 (low carbon steel)	63
	Tensile Result Heat Treatment Microstructure Analysis on Heat Treatment Process Base Metal A516 Grade 70 (low carbon steel)

4.1.1.2	2 Tempering Result	64
4.1.1.3	3 Quenching Result	64
4.1.1.4	4 Full Annealing Result	65
4.1.1.5	5 Normalizing Result	65
4.3	Cracking Surface	66
4.4	Hardness Result	66
4.5	K _{IC} Result	68
4.6	Fractograph Result	71
4.6.1	Scanning Electron Machine Analysis	71
4.6.2	Comparison Structure	72

5. CONCLUSIONS

5.1	Conclusion	74
5.2	Recommendation	75

76

79

REFERENCES

APPENDIX

А	Gantt chart PSM I
В	Planning Gantt chart PSM II

LIST OF TABLES

TABL	<u>E</u> <u>TITLES</u>	PAGE
2.1	Composition range and limits for ASTM A 516 Grade 70	07
2.2	Mechanical properties and their application of structural steel	07
2.3	Material composition A516 Grade 70 as received	08
2.4	Oxide color for tempering steel	28
3.1	ASTM standard scale frequently	57
4.1	Stree vs Strain Graph	61
4.2	Stress vs Strain Parameter Obtained	62
4.3	Hardness Parameter	67
4.4	K _q Comparisons	71

LIST OF FIGURES

<u>FIGU</u>	<u>TITLES</u>	PAGE	
2.1	Low carbon steel microstructure	09	
2.2	High carbon steel microstructure	10	
2.3	The Fe-C equilibrium diagram up to 6.67 wt%	14	
2.4	Influence of alloying elements additions on eutectoid temperature and		
	eutectoid carbon content	16	
2.5	Example of eutectic and eutectoid reactions in Fe-Fe3 C	16	
2.6	Microstructure of eutectoid of steel (I)	17	
2.7	Microstructure of eutectoid steel (II)	17	
2.8	Microstructure of hypoeutectoid steel (I)	19	
2.9	Microstructure of hypoeutectoid steel (II)	19	
2.10	Microstructure of hypereutectoid steel (I)	19	
2.11	Microstructure of hypereutectoid steel (II)	19	
2.12	Kinetics of phase transformation	21	
2.13	Full annealing graph	23	
2.14	Time temperature regime of normalizing, a heating, b holding at		
	austenitizing temperature c air cooling d air or furnace cooling	24	
2.15	Range of austenitizing temp for normalizing unalloyed steels depend of	on	
	their carbon content	24	
2.16	Effect of grain refining by normalizing a carbon steel of 0.5C. Left sid	e,	
	as-rolled or forged grain size ASTM 3 and right side normalized ASTM	M 6	
	magnification 500x	25	
2.17	Transformation of a pearlitic structure to austenite when heating an		
	unalloyed eutectoid steel of 0.8 % C	26	
2.18	Cup and cone ductile fracture of a tensile specimen	30	
2.19	Longitudinal section of a tensile-strained specimen just prior to fractur	e 30	
2.20	Stress vs strain graph	31	

2.21a	Flat R curve	32
2.21b	Rising R curve	32
2.22	Compact test specimen for pin 0.24W (+0.000W / -0.005W) diameter	33
2.23a	linear-elastic	34
2.23b	Elastics-plastic (failure before limit load)	34
2.23c	Fully plastic (exhibits a limit load)	34
2.24	ASTM E 399 compact specimen for fracture toughness testing	36
2.25	Typical load-versus-displacement record for the K_{IC} test, two types.	37
2.26	Modes I (opening mode)	39
2.27	Modes I Crack	40
2.28a	Test records	41
2.28b	Heat-tinted fracture surface	41
2.28c	J calculation	41
2.28d	Resistance curve	41
2.29	Fatigue Pre-crack	42
3.1	Process flow chart	44
3.2	Material A516 Grade 70	45
3.3	Cutting area by using contour bent saw machine	46
3.4	Contour bent saw machine	46
3.5a	Milling Machine	47
3.5b	Surface Milling	47
3.5c	Drilling	47
3.6a	Wire EDM cutting area	48
3.6b	Wire EDM cutting machine	49
3.7	Austenite graph	49
3.8	Tempering flow chart	50
3.9	Quenching flow chart	51
3.10	Full Annealing flow chart	52
3.11	Normalizing flow chart	53
3.12	Instron machine model 8800	54
3.13	Instron machine model 8802	54
3.14a	Complete set jig with pin	55
3.14b	Optical Telescope and specimen	55

3.14c	Clip gauge	55
3.14d	COD displacement measurement	56
3.14e	Compact test specimen	56
3.15	Hardness Vickers test machine	57
3.16	3% Nital solution	58
3.17	Axioscope Zeiss Optical Microscope	58
3.18a	Scanning Electron Microscope	59
3.18b	An example of fractographs, left side is brittle fracture	59
3.19	Tensile specimen	60
3.20	Universal Tensile Machine	60
4.1	Stress vs Strain Graph	61
4.2	Base Metal Microstructure	63
4.3	Tempering Microstructure	64
4.4	Quenching Microstructure	64
4.5	Full Annealing Microstructure	65
4.6	Normalizing Microstructure	65
4.7	Cracking Surface	66
4.8	Heat Treated Low Carbon Steel vs Hardness Vickers	67
4.9	K _{IC} Base Metal Graph	68
4.10	K _{IC} Full Annealing Graph	69
4.11	K _{IC} Normalizing Graph	70
4.12	K _{IC} Tempering Graph	70
4.13	Base Metal Structure	71
4.14	Full Annealing Structure	71
4.15	Normalizing Structure	72
4.16	Tempering Structure	72
4.17	Pre-Cracking Microstructure	72
4.18	Fracture Microstructure	73

LIST OF ABBREVIATIONS AND SYMBOLS

ASTM	-	American Society for Testing and Materials		
Al	-	Aluminium		
AISI	-	American iron and steel institute		
AC	-	Alternating current		
BCC	-	Body centred cubic		
BCT	-	Body centred tetragonal		
BM	-	Base metal		
CTOD	-	Crack-tip opening displacement		
CGHAZ	-	Coarse-grained heat affected zone		
С	-	Composition		
CGB	-	Coarse-grained bainitic		
CCT	-	Centre-cracked tension		
Cr	-	Chromium		
EDM	-	Electric discharge machining		
EPFM	-	Elastic-plastic fracture mechanics		
FCG		Fatigue crack growth		
FCC	-	Face centred cubic		
FGB	-	Fine-grained bainitic		
FGHAZ	-	Fine-grained heat affected zone		
GDS	-	Glow Discharge Spectrometry		
HAZ	-	Heat affected zone		
ICR	-	Inter-critical region		
Κ	-	Critical stress		
K_1	-	Stress intensity factor		
K_C	-	Maximum fracture toughness		
K _{IC}	-	Fracture toughness		
LEFM	-	Linear elastic fracture mechanics		
LPG	-	Liquefied petroleum gas		
Mo	-	Molybdenum		
Mn	-	Magneseum		

MPa	-	Mega pascal	
Psig	-	Pound-force per square inch gauge	
PWHT	-	Post weld heat treatment	
SENT	-	Single edge notch tension	
SENB	-	Single edge notch bend	
SS	-	Stainless steel	
Si	-	Silicon	
Ti	-	Titanium	
UNS	-	United Standard	
WM	-	Weld metal	
Zr	-	Zirconium	
da/dN	-	Crack growth rate per cycle of loading	
σ_x	-	Longitudinal stress	
σ_y	-	Transverse stress	
σ_m	-	Maximum stress	
r	-	Radius	
E	-	Young`s Modulus	
<i>a</i> *	-	Effective crack length	
r_p	-	Circular plastic zone of radius	
θ	-	Angular coordinate	
τ_{xy}	-	Torque stress	
f	-	Residual stress	
G	-	Energy release rate	
$\gamma_{\rm s}$	-	Specific surface energy	
t	-	Thickness	
a	-	Width and Length	
γ_p	-	Work of plastic deformation	
σ	-	Applied stress	
a	-	Crack length	
σ_{ys}	-	Elastic-plastic boundary	

CHAPTER 1 INTRODUCTION

In this century, the world is more advanced together with turn of their rolling. These phenomena show that the industry is increasing and alert for new-technologies. Industries have now growing up caused of high demands on the quality of engineering technology. An either obvious of one example am requesting on the use of pressure vessels steel as autoclaves, boiler and others. This existed in all sector industry to generate one product having quality and durable. Pressure vessels are one device that it's very synonyms for high temperatures. This is very sensitive area so all factor fabrication of pressure vessels is not in consideration because it's impact involve deaths and priceless property damage. Therefore, these books publish to investigate the fracture toughness of pressure vessel steel and relation on microstructure

1

1.1 Problem Statement

The main topic of this research is about to investigate on the effect of heat treatment on fracture toughness of pressure vessels steel. This research carried out base on still equivalent has been problem rose in pressure vessels steel.

Cracking of internal surface in pressure vessels is very synonym happened but until now to avoid this failure it's still undergoing. Cracks will occur at welds and in the HAZ of the weld and the crack will affect both parallel and transverse to the weld. Cracking has occurred just after welding and as well as during the intended service life. In particular, tensile residual stresses near the weld area may cause brittle fracture, stress raisers, fatigue failure and stress corrosion cracking when exposed to corrosive environments at certain temperature ranges [Challenger, N.V. 1995].

Semi-skilled or weaknesses during welding process is one of the critical failures in pressure vessels. This problem such as brittle cracking in the heat-affected zone (HAZ), often result from the use of steels containing excessive amounts of residual elements that increase hardens ability and susceptibility to cracking. Steel sometimes produced inadvertently when low-carbon steel is made in a furnace normally used to make high-alloy steel. The refractory lining of the furnace may impart sufficient residual chromium and other alloying elements to a heat of low-carbon steel that problems occur when components made from that heat are joined using standard welding procedures. Therefore, complete control of composition is of the almost importance when welding is involved [Powel, G.W. 2002].

1.2 Objective

The overall objective of these researches is as follow;

- i) To investigate the effect of heat treatment on fracture toughness of pressure vessel steel
- ii) To identify the fracture toughness on different microstructure.

1.3 Scope of the Project

The aimed of this research is to investigate the effect of heat treatment on fracture toughness of pressure vessels steel for two different materials. The material that used is from ASTM A516 Grade 70. Referring on ASTM standard, the properties of this material is low-carbon. As mention in chapter 2 on literature review, the carbon content of low-carbon steel is less 0.25% carbon. To ensure this research done with their objective and scope, a few methods of heat treatment and also testing hardness are used. On the heat treatment process this research used austenizing, annealing normalizing, quenching and tempering. This research also covers the determination of fracture toughness steel under predominantly linear-elastic fracture mechanic, elastic-plastic fracture mechanic plane-strain conditions using fatigue pre-cracked, Crack Tip Opening Displacement (CTOD) and $K_{\rm IC}$. The details of test apparatus, specimen configuration, and experimental procedure are given based on ASTM standard E 399-90.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction of Pressure Vessel

Vessels tanks, and pipelines that carry, store, or receive fluids are called pressure vessels. A pressure vessel is defined as a container with a pressure differential between inside and outside. The inside pressure is usually higher than the outside, except for some isolated situations. The fluid inside the vessel may undergo a change in state as in the case of steam boilers, or may combine with other have a combination of high pressures together with high temperatures, and in some cases flammable fluids or highly radio active material. Because of such hazards it is imperative that the design be such that no leakage can occur. In addition these vessels have to be designed carefully to cope with the operating temperature and pressure. It should be borne in mind that the rupture of pressure vessels has a potential to cause extensive physical injury and property damage. Plant safety and integrity are of fundamental concern in pressure vessel design and these of course depend on the adequacy of design codes.

In other words of pressure vessel steel is a closed container designed to hold gases or liquids at a pressure different from the ambient pressure. The end caps fitted to the cylindrical body are called heads. The rules for pressure vessel are contained in the American Society of Mechanical Engineers Boiler and Pressure Vessel Code [Harvey, J.F. 1985]. Pressure vessels are used in a variety of applications. These include the industry and the private sector. For examples of pressure vessels are; autoclaves, storage tanks or oil refineries.

Large pressure vessels were invented during the industrial revolution, particularly in England for making steam engines [Harvey, J.F. 1985]. Design and testing standards came about after some large explosions lead to loss off life and a system of certification and testing mutations.

Pressure vessels as components of a complete plant are designed to meet various requirements as determined by the designers and analysis responsible for the overall design. The first step in the designed procedure is to select the necessary relevant information, establishing in this way a body of design requirements. Once the design requirements have been established, suitable materials are selected and the specified design code will give an allowable design or nominal stress that is used to dimension the main pressure vessel thickness.

Generally, almost any material with good tensile properties that is chemically stable in the chosen application can be employed. Many pressure vessels are made of steel. To manufacture a spherical pressure vessel, forged parts would have to be welded together. Some mechanical properties of steel are increased by forging, but welding can sometimes reduce these desirable properties. In case of welding, in order to make the pressure vessel meet international safety standards, carefully selected steel with a high impact resistance and corrosion resistant material should also be used.

2.2 Structural and Material Considerations

The continued and prolonged use of pressure vessels for power generation, nuclear or chemical reactions, industrial processing, and storage requires them to withstand severe conditions of pressure, temperature, and other environments. Such environmental conditions include corrosion, neutron irradiation, hydrogen embrittlement, and so on. Pressure vessels are required to operate at a high temperature range from as high as 600°C to as low as -20°C, with design pressures as high as 140 MPa. Some vessels are designed to carry noncorrosive fluids; while others are designed to withstand harsh corrosive and highly radioactive environments. The type of service, whether steady or cyclic, may also vary considerably. For each set of operating parameters, the pressure vessels material may

be required to have certain properties. For example, operation at very low temperatures would require the use of materials with high notch toughness, while operation at high temperatures would require the use of materials with high creep strength.

Apart from the mechanical properties, considerations on manufacturability, commercial availability, as well as cost, has to be accounted for in the selection process. From researcher the materials that are used in pressure vessel construction are:

a) Steels

- i) Nonferrous materials such as aluminum and copper
- ii) Specialty metals such as titanium and zirconium
- iii) Nonmetallic materials, such as, plastic, composites and concrete
- iv) Metallic and nonmetallic protective coatings

b) The mechanical properties that generally are of interest are:

- i) Yield strength
- ii) Ultimate strength
- iii) Reduction of area (a measure of ductility)
- iv) Fracture toughness
- v) Resistance to corrosion

2.3 Pressure Vessel Steel

For this research, the types of material that used as follow the ASTM standard requirement. The material that will be used in this research is A516 Grade 70 or ASME SA 516 (low-carbon steel)

2.3.1 ASTM A516 Grade 70 or ASME SA516

The grade of this material is one of the most popular steel grades in market. It is primarily intended for use in welded pressure vessels where notch toughness is important. It comes in four grades 55, 60, 65 & 70. These grades cover a range of tensile strengths from 55 - 90 MPa and this versatility explains much of the specification popularity. For material tested were an ASTM A516 grade 70 hot-rolled steel of ferritic-perlitic structure is one of our most popular steels. The ASME standard composition is as follows (dependent on grade).

Referring the ASTM standard, table below shows the lists of chemical composition and mechanical property requirements for these grades. Most of the steel are given no heat treatment after hot rolling and thus develop their mechanical properties as a result of control of composition and grain size (through deoxidation practice). In some case, for example A515 and A516, plates greater than 50mm thickness are normalized. Although only moderate in yield and tensile strength, these kinds of steels have the proper combination of strength, ductility, toughness and weldability to perform satisfactorily in structural applications. The carbon content is rarely over 0.25% (to increase it above this level may reduce toughness and weldability) and will rarely be blow 0.15% for reasons of strength [Henkle, D. *et al* 2002]

ASTM	Type /	UNS	Heat Composition Ranges and Limits, % (a)				
GRADE	Grade	Designation	С	Mn	Р	S	Si
A 516	Grade 70	K 02700	0.31	0.85-1.20	0.035	0.04	0.15-0.30

Table 2.1: Composition range and limits for ASTM A 516 Grade 70

Table 2.2: Mechanical properties and their application of structural ste	el
--	----

ASTM GRADE	USE	YIELD STRENGTH, MPa	TENSILE STRENGTH, MPa	ELONGATION IN 50mm, %
A 516 / 70	Pressure vessels, low temperature	310	520	26