QUALITY IMPROVEMENT USING 5S CONCEPT IN MANUFACTURING INDUSTRY

SARVIN S/O SILVARAJO

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Quality Improvement Using 5S Concept In Manufacturing Industry

Thesis submitted in accordance with the requirements of the Universiti Teknikal Malaysia Melaka for the Degree of Bachelor of Manufacturing Engineering (Manufacturing Management)

By

SARVIN S/O SILVARAJO

Faculty of Manufacturing Engineering April 2008

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

	BURA	ANG PENGESAHAN STATI	D2 1F2I2
		OVEMENT USING 5S CONG COMPANY	ONCEPT IN
SESI PENGAJIAN	N : _2004/20	008	
mengaku memb	Jniversiti Tek	is (PSM/Sarjana/Doktor F	Falsafah) ini disimpan di ITeM) dengan syarat-syarat
 Tesis adalah hak milik Universiti Teknikal Malaysia Melaka . Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (√) 			
SUL	IT	• •	t yang berdarjah keselamatan sia yang termaktub di dalam 2)
TER	RHAD	. 0	t TERHAD yang telah ditentukan Ii mana penyelidikan dijalankan)
TIDA	AK TERHAD		Disahkan oleh:
(TANDA	TANGAN PEN	NULIS)	(TANDATANGAN PENYELIA)
Alamat Tetap:		Сор	Rasmi:
NO. 4 JALAN 7			
TAMAN SEGAL 51200 KUALA I			
Tarikh:		Taril	kh:

C Universiti Teknikal Malaysia Melaka

^{*} Tesis dimaksudkan sebagai tesis bagi Ijazah Doktor Falsafah dan Sarjana secara penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan penyelidikan, atau Laporan Projek Sarjana Muda (PSM).
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Karung Berkunci 1200, Ayer Keroh, 75450 Melaka

Tel: 06-233 2421, Faks: 06 233 2414

Email: fkp@kutkm.edu.mv

FAKULTI KEJURUTERAAN PEMBUATAN

Rujukan Kami (Our Ref): Rujukan Tuan (Your Ref):

30 April 2008

Pustakawan Perpustakawan Universiti Teknikal Malaysia Melaka UTeM, Ayer Keroh MELAKA.

Saudara,

PENGKELASAN TESIS SEBAGAI SULIT/TERHAD

- TESIS SARJANA MUDA KEJURUTERAAN PEMBUATAN (PENGURUSAN PEMBUATAN): SARVIN A/L SILVARAJO TAJUK: QUALITY IMPROVEMENT USING 5S CONCEPT IN MANUACTURING INDUSTRY

Sukacita dimaklumkan bahawa tesis yang tersebut di atas bertajuk "Quality Improvement Using 5S Concept In Manufacturing Industry" mohon dikelaskan sebagai terhad untuk tempoh lima (5) tahun dari tarikh surat ini memandangkan ia mempunyai nilai dan potensi untuk dikomersialkan di masa hadapan.

Sekian dimaklumkan. Terima kasih.

"BERKHIDMAT UNTUK NEGARA"

Yang benar,

ABDUL RAHMAN BIN MAHMOOD Pensyarah, Fakulti Kejuruteraan Pembuatan ☎06-2332421

DECLARATION

I hereby, declared this thesis entitled "Quality Improvement Using 5S Concept
In Manufacturing Industry" is the results of my own research
except as cited in references.

Signature	:	
Author's Name	:	SARVIN S/O SILVARAJO
Date	:	1 MAY 2008

APPROVAL

This Thesis submitted to the senate of UTeM and has been as partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Management). The members of the supervisory committee are as follow:

(En. Abdul Rahman Bin Mahmood)

ABSTRACT

This thesis focuses on the quality improvement at WINCO Precision Engineering (WPE) a precision machining company for Panasonic's air conditioners, compressors and refrigerator equipments. The objective of this research is to identify the current Quality Management System (QMS) implemented in this company while carrying out their operation. From this, the current quality problems that the company face will also be identified and studied. As conclusion to this research, recommendations and solutions to the problem faced will be suggested to the company's management to improve the current quality system as well as increase efficiency.

This research only focuses on problem faced in the production section of the company. Only issues regarding to method of handling in quality will be address and none of the mechanical and machinery factor will be covered in this research. In order to gather and analyze the data related to the quality some of Statistical Quality Control (SQC) tools were used such as pareto chart, histogram, cause and effect diagram and control chart. In improving the quality related problem faced by the production section of the company, suggestions based on 5S quality concept will be used as an approach to solve the problems faced. All suggestions given to solve quality problem will be based on 5 quality pillars of 5S concept which is *seiri*, *seiton*, *seiso*, *shitsuke and seiketsu*.

DEDICATIONS

For My beloved family and friends

ACKNOWLEDGEMENTS

In pursuing this research, I would like to thank several people who have contributed to this endeavour. The following individuals provided valuable comments on earlier drafts of the work: Mr Abdul Rahman Bin Mahmood as my official supervisor, Prof. Madya Dr. Adi Saptari as the head of Manufacturing Engineering Faculty who is also my second reader and others lecturers who have significantly help, whether directly or not. Special thanks to all staff of WINCO Precision Engineering (WPE) especially to the top managements for their permission and support in allowing me to perform my research at the company's plant.

I would also like to thank my family members especially my mother for her love and support in helping me to overcome the hurdles in pursuing and performing this research. Also not forgetting, special thanks to my friends who have supported and guided me in doing this research. A very huge appreciation also would like to be given to all the academic staff from Faculty of Manufacturing Engineering (FKP) and all the office staffs for their courage and support.

TABLE OF CONTENTS

Declaration	
Abstract	i
Dedication	ii
Acknowledgement	iv
Table of contents	V
List of tables	ix
List of figures	Σ
List of abbreviations, symbols, specialized nomenclature	xii
1. INTRODUCTION	1
1.1 Story of quality and 5S concept	1
1.2 Background of problem	2
1.3 Objective	3
1.4 Scope	3
1.5 Arrangement of this project	4
1.6 Project schedule	5
2. LITERATURE STUDY	6
2.1 Introduction	6
2.2 Definition of quality	6
2.3 Importance of quality management	8
2.4 Total Quality Management (TQM)	10
2.4.1 TQM definition	10
2.4.2 Implementation of principles and processes of TQM	11
2.5 ISO 9000:2000 system	12
2.5.1 Previous ISO 9000 system	13
2.5.2 New ISO 9000 system	16
2.5.2.1 New requirements	17
2.5.2.2 New approach	17

	2.6	5S Quality Concepts	21
		2.6.1 What is 5S?	21
		2.6.1.1 Seiri	23
		2.6.1.2 Seiton	24
		2.6.1.3 Seiso	24
		2.6.1.4 Seiketsu	25
		2.6.1.5 Shitsuke	25
		2.6.2 Basic definition of good house keeping	26
		2.6.3 Benefits of 5S implementation	27
		2.6.4 The other benefits that may accrue in implementing '5S'	27
		2.6.5 Comparison of ISO 9001 with 5S concept	28
		2.6.6 Combining 5S concept with ISO system	28
	2.7	Analytical tools for 5S concept and continuous improvement	29
		2.7.1 Flow charts	30
		2.7.2 Run charts	31
		2.7.3 Check sheets	31
		2.7.4 Pareto charts	32
		2.7.5 Cause and effect diagrams	33
3.	CO	MPANY BACKGROUND	
	3.1	About the company	34
	3.2	Location of the company	36
		Vision and policy	
	3.4	Customers of WINCO	41
4.	ME	THODOLOGY	43
	4.1	Process flow	43
		Flow chart explanation	
		4.2.1 Start	
		4.2.2 Problem identification on Quality Management System (QMS) in	
		Industry	45
		4.2.3 Definition on problem	

		4.2.4 I	Literature review: Book, Journal, Article	46
		4.2.5 I	Preparing data collection	46
		4.2.6	Collecting data on quality problems in manufacturing industry	47
		4.2.7 I	Develop Charts and related diagrams and sheet for collected data	47
		4.2.8	Analyze the collected data	47
		4.2.9 I	Recommendation for improvement	48
5.	DA	TA AN	ALYSIS, RESULT & DISCUSSION	49
	5.1	Introd	uction	49
	5.2	The Q	Quality Procedure Applied at WINCO Precision Engineering .	50
	5.3	Data 1	recording on crankshaft specification	51
		5.3.1	Illustration on sections of a crankshaft	51
		5.3.2	Crankshaft material and models	52
	5.4	Data c	ollection	58
		5.4.1	Rejection by model analysis	60
	5.5	Data a	nalysis	63
		5.5.1	Potential causes of high rejection level	
		5.5.2	Types of defect	64
			5.5.2.1 Wrong raw material	65
			5.5.2.2 Mixed model	66
			5.5.2.3 Wrong dimension	68
			5.5.2.4 Incoming quality of raw material	72
		5.5.3	Data analysis on defects	73
		5.5.4	Major defect analysis	75
		5.5.5	Root cause analysis	77
			5.5.5.1 Root causes analysis for mixed model defect	77
			5.5.5.2 Root causes analysis for wrong raw material defect	78
			5.5.5.3 Root causes analysis for wrong dimension defect	79
		5.5.6	Summary on the analysis	82
	5.6	Qualit	y improvement using 5S concept and methodology	83
		5.6.1	Proper training for operators	83
		5.6.2	New inspection sheet	84

		5.6.3	Calibration of equipment	89
		5.6.4	Drawings and guideline at production line	90
	5.7	Summ	nary on chapter	95
6.	CO	NCLU	JSIONS	96
	6.1	Concl	usion	96
	6.2	Recon	nmendation	97
AI	PPE	NDICI	ES	
A		Gantt	chart of PSM 1	
В		Gantt	chart of PSM 2	
C		Samp	le of rejection notice used in WINCO	
D		Drawi	ing & Specification of Crankshaft	

Inspection sheet for crankshafts used in WINCO

Е

LIST OF TABLES

5.1	Types of raw material and their respective product	52
5.2	Dimension of each section on main journal	55
5.3	Dimension of each section on eccentric	56
5.4	Total length and eccentric section on crankshafts	57
5.5	Amount of output and rejection according to month for year 2007	58
5.6	Frequency and percentage of rejection for each model	60
5.7	Frequency and percentage of defect for each month	73
5.8	Total frequency and cumulative percentage for each defect	75

LIST OF FIGURES

2.1	Empirical research of quality management	9
2.2	Example of a flow chart	30
2.3a	Run chart	31
2.3b	Check sheet	31
2.3c	Pareto chart	32
2.4	Cause effect diagram	33
3.1	Company's logo	36
3.2	M2 Section of WINCO	37
3.3	M3 Section of WINCO	38
3.4	WINCO's Quality Policy	39
3.5	Organization chart of WINCO Precision Engineering	4(
4.1	Process flow chart	44
5.1	Sections on a crankshaft	51
5.2	PRDM crankshaft models produced in WINCO Precision	52
	Engineering	
5.3	Crankshaft model QB66	53
5.4	Crankshaft model QA125J	53
5.5	Crankshaft model QB57	53
5.6	Crankshaft model QB51	53
5.7	Crankshaft model QB91	53
5.8	Sample of raw material used to produce crankshaft	54
5.9	Sections measured on main journal and eccentric of crankshaft	54
5.10	Illustration of sections measured on main journal of crankshaft	55
5.11	Illustration of sections measured on eccentric of crankshaft	56

5.12	Illustration of the entire crankshaft	57
5.13	Total crankshaft production according to month for year 2007	59
5.14	Rejection percentage for each model for year 2007	61
5.15	Total rejection for each model for year 2007	62
5.16	Potential causes of defect	63
5.17	Sample of a raw material with specific marking	65
5.18	Marking differentiation on crankshaft models	67
5.19	Current main journal inspection sheet for R/Super crankshaft in	70
	WINCO	
5.20	Current eccentric inspection sheet for R/Super crankshaft in WINCO	71
5.21	Percentage of each type of defect according to month for year 2007	74
5.22	Pareto chart for major defects	75
5.23	Cause and effect diagram	81
5.24	Sample of new inspection sheet for main journal section	86
5.25	Sample of new inspection sheet for eccentric section	87
5.26	Sample of new inspection sheet for length of crankshaft	88
5.27	Marking differentiation guideline for R/Super crankshaft models	91
5.28	Sample of main journal specification sheet for R/Super crankshaft	92
5.29	Sample of eccentric specification sheet for R/Super crankshaft	93
5.30	Sample of length specification sheet for R/Super crankshaft	94

LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

QMS - Quality Management System

SQC - Statistical Quality Control

TQM - Total Quality Management

WPE - WINCO Precision Engineering

MM - Millimetre

CHAPTER I

INTRODUCTION

1.1 Story of quality and 5S concept

During the time of World War II, it virtually destroyed the production capability of Europe and Asia. On the contrary, the United States (U.S) production capability greatly expanded since their major emphasis was on quantity and not quality production. However, as poor as it was in quality, the U.S still produced the best in the world compared to other nations. In late 1940s, Dr. W. Edwards Deming, a U.S quality control expert began working with the Japanese and continued doing so periodically for several years.

The Japanese developed the quality circle concept during the early 1960 and 20 years later, the concept had expanded to more than a million organizations. At the same time, Dr. Genichi Taguchi, a Japanese quality expert, introduced new statistical concept that was invaluable in improving process and product quality. Due to this improvement, Japanese industry ultimately has developed in various technologies all over the world. Following in their footsteps, U.S made some drastic changes in strengthening their power in the global age. Example of their improvement is:-

Ford Motor Company decided to do things differently following the Japanese. From the beginning all the disciplines from design through assembly to marketing came on stream in unison. All of the relevant disciplines therefore interacted and contributed from the beginning. The plant was modernized and Ford personnel visited assembly plants, manufacturing facilities, major suppliers. The Ford employee was also asked what they would like to see in a new car (Waterman, 1987).

Besides all kinds of quality improvement techniques developed, one of the most famous is the 5S concept developed by the Japanese. (Osada, 1991) developed the original concept of 5-S in the early 1980s. 5S is the acronym for five Japanese words. They are:-

- (a) Seiri
- (b) Seiton
- (c) Seiso
- (d) Seiketsu
- (e) Shitsuke

Respectively, Osada refers to the 5Ss as the five keys to a total quality environment. The Japanese have been widely practicing 5-S technique and believe it can help in all aspects of life.

1.2 Background of the problem

Satisfying the customer, through making a good product is the main objective of every manufacturing company. In competition, company is not only to provide cost effective products but also good in quality as well, which satisfy the demand. Fail to check the level of their quality consistently will have a consequence on the continuation of the product. It is necessary for the company to have the suitable quality management methods that fits to the needs, types of product and its activities. This study is based on a case study in a manufacturing

company and will access the current quality management tool which is 5S method in achieving company objectives as well as recommended improvement if necessary.

1.3 Objective

There are a few objectives for this study. Those objectives are:

- (a) To research on the currently used quality management system in the company
- (b) To identify quality problems faced by company
- (c) To use various methodology in analyzing causes of the identified problem
- (d) To give suggestion improvement to solve the problem using 5S quality concepts

1.4 Scope

The scopes of this study are as follows:

- (a) To study the current Quality Management System (QMS) applied in the WINCO Precision Engineering. This study will only focus on the production section of the company regarding to method used to monitor quality and not on any mechanical and machinery aspect such as machine maintenance.
- (b) The product chosen for this research is crankshaft and only main crankshaft produced will be studied which is the R/Super crankshaft.
- (c) Perform necessary analysis on the data and identify problems faced by company in the production section.
- (d) Suggest improvement for top 3 critical problems by applying 5S concept.

3

1.5 **Arrangement of this project**

Chapter 1

This chapter gives an introduction to the project along with objectives and scope. Besides that, it also describes about background of quality and background of problem in the case study Company.

Chapter 2

This chapter presents the literature review on Total Quality Management (TQM), ISO system (previous and current) and 5S Quality Concept. Besides that it also describes about 5S Quality Concept with other Quality approaches.

Chapter 3

This chapter describes background of the company and description regarding to the company's production field.

Chapter 4

Description regarding to the methodology used in this project to analyze problem as well as methods that will be used in performing this study will be discussed in this chapter.

Chapter 5

This chapter will describe and display all results acquired from the research done at WINCO Precision Engineering. The data will be sorted out and arrange for analyzing process. Besides that analysis will be done on the data acquired to identify root cause of each problem. Then improvement for each problem will be done using 5S methodology. This will be analyzed stage by stage by using the five different key elements in 5S concept which is seiri, seiton, seiso, seiketsu, and shitsuke.

Chapter 6

This chapter presents the conclusions of the whole project and suggestion as well as suggestions for future study.

CHAPTER II LITERATURE STUDY

2.1 Introduction

This chapter will describe topics related to quality such as Total Quality Management, 5S methodology, ISO 9000 and Lean manufacturing. This chapter will begin with definitions of quality by quality gurus and an introduction and implementation of Total Quality Management (TQM). Next is followed by 5S methodology and a comparison of 5S with other quality approaches.

2.2 **Definitions of quality**

In the Webster's New World Dictionary quality is defined as physical or nonphysical characteristic that constitutes the basic nature of a thing or is one of its distinguishing features. Shewhart, said that there are two common aspects of quality, one of these has to do with the consideration of the quality of a thing as an objective reality independent of the existing of man. The other has to do with what we think, feel or sense as a result of the objective reality. This subjective side of quality is closely linked to value. It is convenient to think of all matters related to quality of manufactured product in terms of these three functions of specification, production and inspection. (Grant and Leavenworth, 1988). Quality is fitness for use, (Juran, 1989). Quality is conformance to requirements (Crosby, 1979) and quality should be aimed at the needs of the customer present and future (Deming, 1986).

Feigenbaum said that quality is the total composite product and service characteristics of marketing, engineering, manufacture and maintenance through which he product and service in use will meet the expectations of the customer. Mizuno said that product quality encompasses those characteristics which the product most posses if it is to be used in the intended manner. Actually, quality can take many forms. All the definitions mentioned above can be classified into three types. They are quality of design, quality of conformance and quality of performance. Quality of design means that the product has been designed to successfully fill a consumer need, real or perceived. Quality of conformance refers to the manufacture of the product or the provision of the service that meets the specific requirements that set by customer. Lastly, quality of performance brings out the definitions that the product or service performance its intended function as identified by the customer.

As for Dr. W. Edwards Deming, well-known consultant and author on the subject of quality said, "quality as nonfaulty system. Dr. Deming stresses that quality efforts should be directed at the present and future needs of the customer. In other words, customers do not necessary know what they want until they have seen the product or received the service. Another definitions is from, Dr. Joseph M. Juran, in his book describes, quality as fitness for use. He discusses that quality as conformance to requirement and nonquality as nonconformance.