

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

STUDY THE MECHANICAL PROPERTIES OF MARINE COMPOSITE MATERIAL

This report submitted in accordance with requirements of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Material) with Honours.

by

NOOR AFENDI BIN NORDIN

FACULTY OF MANUFACTURING ENGINEERING 2009

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Study the Mechan	ical Properties of Marine Composite Material	
SESI PENGAJIAN: 2008/09 Se	emester 2	
Saya NOOR AFENDI BIN NO	DRDIN	
mengaku membenarkan lapo Teknikal Malaysia Melaka (U	oran PSM ini disimpan di Perpustakaan Universiti TeM) dengan syarat-syarat kegunaan seperti berikut:	
 Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (√) 		
SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)	
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)	
TIDAK TERHAD	Disahkan oleh:	
Alamat Tetan:		
Cop Rasmi: <u>O2-09 Blok 29, Jln Nibong 28</u> <u>Taman Daya</u> <u>81100Johor Bahru</u> Johor		
Tarikh:	Tarikh:	
** Jika laporan PSM ini SULIT atau berkenaan dengan menyatakan se SULIT atau TERHAD.	u TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi ekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai	

DECLARATION

I hereby, declared that this report entitled "Study the Mechanical Properties of Marine Composite Material" is the result of my own research except as cited in the references.

Signature	:	
Author's Name	:	NOOR AFENDI BIN NORDIN
Date	:	20 MAY 2009

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Material) with Honours. The member of the supervisory committee is as follow:

.....

(Principal Supervisor) (Mohd Yuhazri Bin Yaakob)

ABSTRACT

The marine and aerospace composite material is produced from advanced material and high complex technology processing. The hybrid synthetic fiber Kevlar and fiberglass with epoxy developed to study the mechanical properties of marine composite material. Different layers begin with 20 layers, 22 layers, and 24 layers of reinforcement design produced based on layers arrangement and material use. The composite designs produce with using Vacuum Infusion technique. There are four mechanical tests involves which are Tensile Test, Flexural Test, Impact Test, and Hardness Test. These entire tests will be following the ASTM D 3039, ASTM D 790, ASTM D 256, and ASTM D 2240 standard respectively. Specimen Type 5 as a reference specimen provided from SIRIM. Young's modulus value for Specimen Type 2 and 3 are 41.41 % and 49.81 % higher from reference specimen and delamination is the common failure mode for almost specimen. From impact test, the specimen Type 4 impact energy higher 23.62 % and impact strength 15.58 % lower from the reference specimen. Specimen Type 2 more hardens 0.95 % from the reference specimen. The combination of Kevlar and fiberglass can replaced current material from observation and data analysis. The best composition is Type 3 which contains 11 plies of WV Kevlar and fiberglass with thickness 7.5 ± 0.2 mm has Young's modulus, impact strength and hardness value are 4757.75 MPa, 0.633 J/mm² and 83.5. All the specimen result has small different percentage compare to the reference specimen where it made from different processing method that involved high technology such as using autoclave to cure the specimen respectively.

ABSTRAK

Penghasilan bahan termaju dan teknik pemprosesan yang rumit digunakan dalam bidang marin dan aeroangkasa. Kajian sifat mekanikal dilakukan ke atas bahan komposit marin dengan gabungan Kevlar dan gentian kaca digunakan. Rekaan 20 lapisan, 22 lapisan dan 24 lapisan akan dihasilkan dengan perbezaan penyusunan tetulang dan bahan yang digunakan. Semua rekabentuk tersebut dihasilkan menggunakan kaedah Vacuum Infusion teknik. Sebanyak empat jenis ujian mekanikal terlibat iaitu Ujian Tegangan, Ujian Lenturan, Ujian Hentaman dan Ujian Kekerasan dan berdasarkan piawaian ASTM D 3039, ASTM D 790, ASTM D 256 dan ASTM D 2240. Spesimen rujukan yang diperolehi daripada pihak SIRIM dikenali sebagai Spesimen Type 5. Spesimen Type 2 dan 3 mempunyai nilai modulus keanjalan sebanyak 41.41 % dan 49.81 % tinggi daripada spesimen rujukan dan jenis kegagalan *delamination* terjadi kepada hampir kesemua spesimen. Daripada ujian hentaman, didapati tenaga hentaman spesimen Type 4 mempunyai 23.62 % tinggi dan tenaga hentaman 15.58 % rendah daripada speismen rujukan. Spesimen Type 2 0.95 % lebih keras daripada spesimen rujukan. Daripada pemerhatian dan analisa mendapati bahawa gabungan Kevlar dan gentian kaca boleh menggantikan penggunaan bahan marin yang sedia. Spesimen Type 3 adalah komposisi yang terbaik dimana mengandungi 11 lapisan Kevlar dan gentian kaca dengan ketebalan 7.5 ± 0.2 mm serta mempunyai nilai modulus keanjalan, tenaga hentaman dan kekerasan iaitu 4757.75 MPa, 0.633 J/mm² and 83.5. Semua keputusan spesimen hanya mempunyai perbezaan peratusan yang kecil berbanding dengan bahan yang sedia ada dimana ia dihasilkan daripada proses yang berbeza dengan penglibatan teknik berteknologi tinggi seperti penggunaan autoclave untuk memastikan specimen kering sepenuhnya.

DEDICATION

My beloved mum "Pn. Normawati" and my dear Siti Eaisyah Kamaruzaman. I'm trying my best to make you guys proud.

ACKNOWLEDGEMENT

I wish to apply my greatest appreciation and gratitude to my project supervisor, Mr Mohd Yuhazri bin Yaakob for the greatest supervision, guidance and encouragements from them during this undergraduate project. Accomplishment of this PSM project is really meaningful to me where experiences gained throughout this project. Indeed, every challenges and problems which come in the period of completing the project as seen as the strength that makes me to be more creative in problem solving.

Last but not least, thank you to those involve for great phrase of praise, awareness, support and anxiety that been share together in order to complete this project.

TABLE OF COTENT

Abstract		i	
Abstrak	Abstrak ii		
Dedicati	on	iii	
Acknow	ledgement	iv	
Table of	Contents	V	
List of T	Tables	viii	
List of F	ligures	ix	
List of A	Abbreviations	xii	
List of S	Symbols	xiii	
1.0 INT	RODUCTION	1	
1.1	Problem Statement	1	
1.2	Objectives	1	
1.3	Scopes	2	
1.4	Rational of Research	2	
1.6	Thesis Frame	2	
2.0 LIT	ERATURE REVIEW	4	
2.1	Introduction to Marine Composites	4	
2.2	Matrix Material	5	
	2.2.1 Thermoset	6	
2.3	Epoxy	6	
	2.3.1 Advantages of Epoxy Resin	8	
	2.2.1.1 Adhesive Properties	8	
	2.2.1.2 Mechanical Properties	9	
	2.2.1.3 Degradation from Water Penetration	10	
2.3	Reinforcement	11	
	2.3.1 E-Glass Fiber	12	
	2.3.2 Kevlar	13	
2.4	Interply Hybrid Laminates	14	

	2.5	Composite Fabrication 16		
		2.5.1 Manufacturing Process Selection Criteria	16	
		2.5.1 Hand Lay-Up Technique	18	
		2.5.2 Vacuum Infusion Technique	19	
	2.6	Summary of the Journals	19	
	2.7	Summary of Literature Review	21	
3.0	MET	THODOLOGY	22	
	3.1	Raw Materials Preparation	22	
	3.2	Vacuum Infusion Technique	24	
		3.3.1 Vacuum Infusion Procedures	25	
	3.3	Composites Design	26	
	3.4	Tensile Test (ASTM 3039 – 00)	27	
		3.4.1 Tensile Testing Procedures	28	
	3.5	Flexural Test (ASTM 7264)	29	
		3.5.1 Flexural Testing Procedures	30	
	3.6	Charpy Impact Test (ASTM D 256)	31	
		3.6.1 Charpy Testing Procedures	33	
	3.7	Hardness Test (ASTM D 2240)	34	
		3.7.1 Hardness Testing Procedures	35	
	3.8	Summary of Methodology	36	
4.0	RES	SULT AND DISCUSSION	37	
	4.1	Hybrid Composite Panel Data	37	
	4.2	Tensile Result	38	
		4.2.1 Tensile Result for Kevlar	39	
		4.2.2 Tensile Result for Fiberglass	40	
		4.2.3 Tensile Result for Type 1	41	
		4.2.4 Tensile Result for Type 2	42	
		4.2.5 Tensile Result for Type 3	44	
		4.2.6 Tensile Result for Type 4	45	
		4.2.7 Tensile Result for Type 5	46	
		4.2.8 Compilation Data of Tensile Young's Modulus	48	
		4.2.9 Compilation Data of Tensile Force	49	

		4.2.10 Compilation Data of Tensile Stress50		
		4.2.11	51	
	4.3	Flexu	ral Result	52
		4.3.1	Flexural Result for Type 1	52
		4.3.2	Flexural Result for Type 2	54
		4.3.3	Flexural Result for Type 3	55
		4.3.4	Flexural Result for Type 4	57
		4.3.4	Flexural Result for Type 5	58
		4.3.6	Compilation Data for Flexural Force	59
		4.3.7	Compilation Data for Flexural Stress	60
		4.3.8	Compilation Data for Flexural Strain	61
	4.4	.4 Impact Result		
		4.4.1	Impact Result for Type 1	63
		4.4.2	Impact Result for Type 2	63
		4.4.3	Impact Result for Type 3	64
		4.4.4	Impact Result for Type 4	65
		4.4.5	Impact Result for Type 5	66
		4.4.6	Compile Data of Impact Energy	67
		4.4.7	Compile Data of Impact Strength	68
	4.5	Hardn	ness Result	68
	4.6	Summ	nary of Result and Discussion	70
5.0	CON	ICLUS	SION AND RECOMMENDATION	71
	5.1	Concl	usion	71
	5.2	Recor	nmendation	72

REFERENCES

73

APPENDICES

- A Vacuum Infusion Process
- B ASTM Standards
- C Gantt Chart

LIST OF TABLES

NO.	TITLE	PAGE
0.1	Truical managetics of different class fiber	12
2.1	Typical properties of different glass fiber	13
2.2	Typical properties of para amid fiber	14
2.3	Manufacturing process selection criteria	17
3.1	Calculation Formula for 3 Point Flexural Test	31
3.2	Types of impact failure mode	34
4.1	Data of hybrid composite panel	37
4.2	Data of SIRIM composite panel	38
4.3	Data for Kevlar obtained from tensile test	39
4.4	Data for Fiberglass obtained from tensile test	40
4.5	Data for five specimens of Type 1 with average obtained from tensile test	41
4.6	Data for five specimens of Type 2 with average obtained from tensile test	42
4.7	Data for five specimens of Type 3 with average obtained from tensile test	44
4.8	Data for five specimens of Type 4 with average obtained from tensile test	45
4.9	Data for five specimens of Type 5 with average obtained from tensile test	47
4.10	Data for five specimens of Type 1 with average obtained from flexural tes	t 53
4.11	Data for five specimens of Type 2 with average obtained from flexural tes	t 54
4.12	Data for five specimens of Type 3 with average obtained from flexural tes	t 56
4.13	Data for five specimens of Type 4 with average obtained from flexural tes	t 57
4.14	Data for five specimens of Type 5 with average obtained from flexural tes	t 58
4.15	Result of impact test	62

LIST OF FIGURES

NO.	TITLE	PAGE
2.1	Comparative Tensile Strength of Resins	9
2.2	Comparative Stiffness of Resins	10
2.3	Effect of Periods of Water Soak at 212°F on Resin Inter-Laminar	
	Shear Strength	11
2.4	Reinforcement fabric construction variations	12
2.5	Tensile stress-strain diagram for a GY-70 carbon/s glass-epoxy interply	7
	hybrid laminate	15
2.6	Variation of tensile strength of a carbon/s glass-epoxy interply hybrid	
	laminate with carbon fiber content	15
2.7	Hand lay-up technique	18
2.8	Vacuum Infusion technique	19
3.1	Raw Material Chart	22
3.2	(a) Epicote 1004 resin, (b) epicote 1004 hardener	23
3.3	E-glass fiber	23
3.4	Kevlar 49	24
3.5	Vacuum infusion technique	24
3.6	Composite mold	26
3.7	Composite laminate layer arrangement	26
3.8	Shimadzu Autograph AG-1S Universal Tensile Machine	27
3.9	Tensile test specimen geometry	28
3.10	Flexural test load point and support span	29
3.11	Schematic diagram of flexural testing for 3-point flex	29
3.12	Flexural test specimen geometry	30
3.13	Pendulum Impact Tester	32
3.14	Charpy impact test specimen geometry	32
3.15	Shore durometer	35

4.1	Tensile graph of stress versus stroke for Kevlar	39
4.2	Tensile graph of stress versus stroke for Fiberglass	40
4.3	Tensile graph of stress versus stroke for specimens Type 1	41
4.4	Tensile graph of stress versus stroke for specimens Type 2	42
4.5	Break specimen Type 2 and edge delamination	43
4.6	Tensile graph of stress versus stroke for specimens Type 3	44
4.7	Tensile graph of stress versus stroke for specimens Type 4	45
4.8	Break specimen Type 4 and peel off	46
4.9	Tensile graph of stress versus stroke for specimens Type 5	46
4.10	(a) Break specimen Type 5 and slip region,	
	(b) break specimen with peel off	47
4.11	Average value of Young's modulus for all specimens	48
4.12	Average value of tensile force for all specimens	49
4.13	Average value of stress for all specimens	50
4.14	Average value of strain for all specimens	51
4.15	Flexural graph of force versus stroke for specimens Type 1	52
4.16	Break specimen Type 1 at load point	53
4.17	Flexural graph of force versus stroke for specimens Type 2	54
4.18	Break specimen Type 2 with delamination	55
4.19	Flexural graph of force versus stroke for specimens Type 3	55
4.20	Break specimen Type 3 with delamination	56
4.21	Flexural graph of force versus stroke for specimens Type 4	57
4.22	Flexural graph of force versus stroke for specimens Type 5	58
4.23	Break specimen Type 5 with pull out	59
4.24	Average value of flexural force for all specimens	59
4.25	Average value of flexural stress for all specimens	60
4.26	Average value of flexural strain for all specimens	61
4.27	Specimen Type 1 break microstructure at 10 magnifications	63
4.28	(a) Partial break specimen Type 2 with delamination,	
	(b) partial break specimen and shear region	64
4.29	(a) and (b) Partial break specimen Type 3 and regions	64
4.30	(a) and (b) Partial break specimen Type 4 and regions	65
4.31	(a) and (b) Partial break specimen Type 5 and regions	66
4.32	Average value of impact energy for all specimen	67

C Universiti Teknikal Malaysia Melaka

4.33	Average value of impact strength for all specimen	68
4.34	Average hardness value for every specimen types	69

LIST OF ABBREVIATIONS

AMC	-	Alkyds
ASTM	-	American Society for Testing and Materials
Bhd	-	Berhad
CSM	-	Chopped Strand Mat
DGEBA	-	Diglycidyl ether of bisphenol
DGM	-	Middle gage failure mode
EP	-	Epoxy
FKP	-	Fakulti Kejuruteraan Pembuatan
HE	-	High elongation
ILSS	-	Inter Laminar Shear Strength
LE	-	Low elongation
LGM	-	Lateral gage middle failure mode
Μ	-	Malaysia
MF	-	Melamine Formaldehyde
PF	-	Phenolics
PSM	-	Projek Sarjana Muda
RTM	-	Resin Transfer Molding
SIRIM	-	Standards and Industrial Research Institute of Malaysia
SRIM	-	Structural reaction injection molding
Sdn	-	Sendirian
UF	-	Urea Formaldehyde
UP	-	Unsaturated Polyesters
UTM	-	Universal Tensile Machine
Vol	-	Volume
WR	-	Woven Roving

LIST OF SYMBOLS

°C	-	Celsius
°F	-	Fahrenheit
g	-	Gram
%	-	Percentage
σ	-	Engineering stress
Е	-	Engineering strain
\mathcal{E}_{f}	-	Strain in the outer surface
E_{f}	-	Modulus of elasticity in bending
<u>+</u>	-	tolerance
cm	-	centimeter
cm ³	-	volume in centimeter
min	-	minute
mm	-	millimeter
mm^2	-	area in millimeter
mph	-	miles per hours
In	-	inch
J	-	Joule
Gal	-	Gallon
Lbs	-	Pound
J/mm ²	-	Joule per are in millimeter
kg/m ²	-	density
mPa	-	mili pascal = 1×10^{-3}
kPa	-	kilo pascal = 1×10^3
Mpa	-	mega pascal = 1×10^6
GPa	-	giga pascal =1 x 10^9
Ec	-	corrected energy
А	-	Area of sample
b	-	Width
d	-	Depth of tested beam
D	-	Maximum deflection of the center of the beam

- *E* Young's Modulus
- F Force acting area
- *h* Thickness
- L Length
- L Support span
- m Slope of the tangent
- N Load
- P Load at a given point on the load deflection curve

CHAPTER 1 INTRODUCTION

1.1 Problem statement

Application of composite materials within the marine surface ship has been limited to date. Recently, however, there has been growing interest in applying composite material to save weight, reduce acquisition, maintenance, life time cycle cost and enhance signature control. The most considering structure in terms of material fabrication is hull, deckhouse foundations and machinery components. These applications have generated a research to verify the producability, cost benefit, damage tolerance, moisture resistance, failure behavior and design criteria. Due to these needed, an acceleration using composite based material is being enhanced especially in the marine environments. This project is basically to study the mechanical properties of marine composite by vacuum infusion process fabricating.

1.2 Objectives

- (a) To identify the appropriate materials for marine composite fabrication using vacuum infusion method.
- (b) To identify and select the best lamination technique using vacuum infusion method.
- (c) To study the mechanical properties of marine composite materials.

1.3 Scopes

- (a) Marine composite material used.
- (b) Fiberglass and kevlar as hybrid material in marine application.
- (c) Vacuum infusion technique in marine fabrication.
- (d) Study the mechanical properties of marine hybrid composite.

1.4 Rational of Research

In recent years, the composite material in marine applications has steadily increasing. To find the particular composite material and produce a new composite design in marine development. At the same time, using low cost of reinforcement and matrix, also having the best mechanical properties needed and improve the previous research in composite material in marine applications.

1.5 Thesis Frame

For this project, chapter one known as the introduction chapter and will include the objectives of the research which is having three main objectives. Follow with scopes of research to avoid this research not too far out of main objectives. This research idea came from problem statement that also included. Then rational of research to answer people question why this research should be done.

In chapter two, begin with introduction marine composite. In this part more to the theory of composite raw material such as epoxy resin, Kevlar and fiberglass, then continue with interply hybrid laminates in previous research. Also fabrication of hand lay up and vacuum infusion method theory involved. At the end of this chapter has summary of collecting journal that related to this research.

The third chapter starting with raw material preparation involved in this research. Then follow with vacuum infusion fabrication technique and composite designs consist of lamination and reinforcement layers arrangement. After that the specimens will be tested with four mechanical tests which are Tensile Test, Flexural Test, Impact Test and Hardness Test and the geometry of specimens referring international standard.

The chapter four begins with hybrid composite panel that has been discussed at chapter three about the composite design. The result and discussion begin with tensile test and another test same as mention from previous chapter and compilations of average data for all result.

Last chapter conclude about from observation and data analysis and achieving the aim of this research. The recommendation added to mention about the material, composite design and processing should be improved or alternative way to produced good composite material.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction to Marine Composites

The last few decades, the demanding of high performance materials with criteria such as light weight, corrosion resistance, also unique mechanical properties, ease of fabrication and low cost is increased. Recently materials use before composite been discovered, often reach their limitation. To solving these problems, engineers and scientists take these opportunities make research to develop the new material which is known as composite material with unique characteristics. Composite materials date from the first light of earliest recorded history (Matthews, F. L., et al., 1999). The use of composites in the marine industry is a concept that holds a tremendous amount of water.

In fact, composite materials are being used more widely in the construction of ships and marine structures than ever before. Composites have a higher stiffness and strength by weight than most other materials, including metals such as steel and aluminium. Used in various parts of a commercial or pleasure craft, the result is a far lighter boat that can achieve a higher rate of speed than the same type of boat constructed of aluminium or steel. Otherwise, the lighter weight keeps fuel costs down and that a significant savings for a boat that may hold hundreds or even thousands of gallons of fuel. There is another factor associated with the lighter weight, speed. A perfect example is the high-speed passenger ferry, Jet Rider, which operates in Norway and carries 244 passengers at 48 mph. With composites making up a large percentage of its structure, the lightweight craft is not only more cost efficient to build than a comparable metal craft, but also able to move quickly. Other composite-hull vessels include a 259 foot ferry that can carry 570 passengers and 137 cars at speeds up to 54 mph (Mc, M. R., 2008).

The use of composites in boat hulls while obviously advantageous is a relatively recent phenomenon. About 20 years ago, composite hulls were limited to smaller vessels, such as pleasure yachts and small commercial fishing boats. Composites were too new and expensive to incorporate into larger vessels. The most common early composite application for larger vessels was military minesweeper hulls made from fiberglass. Today many larger vessels are made from composites, with these materials being used in a variety of areas, including hulls, floor and wall panels, decks and bulkheads, as well as ducting systems, oil tanks and waste water tanks, sonar domes, piping, pumps, valves and superstructures.

Composites are being employed more extensively in a ship's superstructure especially above a ship's deck. Composite materials used reduce weight, which means that more equipment can be installed above the waterline without sacrificing roll stability. Although boats are designed to sustain a certain amount of roll without capsizing, a strong enough force against a top-heavy structure will cause it to capsize. Larger superstructures can be fabricated from composites without proportionally increasing the risk of capsizing.

2.2 Matrix Material

Matrix constituent is continuous and present as the major compound in composite materials. Bind and transfer separately load to the reinforcement. It provides rigidity and shape to the structure and depends to the interface binding.

2.2.1 Thermoset

Thermosets are polymers which do not melt when heated. The strong cross-link bonding affects the chain pulling together. Cross-linking is irreversible therefore thermosets can not be reprocessed (re-melt). Thermosets are stronger and stiffer than thermoplastics. Stiffness of thermosets is even higher than some metals such as aluminum. Thermosets also have higher thermal, chemical and creep resistance than thermoplastics. Thermoset materials may contain filler materials in form of powder or fibers, providing improvement of specific material properties such as strength, stiffness, modulus of elasticity, thermal resistance, and lubricity. Common filler materials are glass in various forms, metal powders or graphite.

Thermoset group:

- (a) Epoxy (EP)
- (b) Unsaturated Polyesters (UP)
- (c) Phenolics (PF)
- (d) Amino Resins
- (e) Urea Formaldehyde (UF)
- (f) Melamine Formaldehyde (MF)
- (g) Alkyds (AMC)

2.3 Epoxy

Epoxy resins are a class of thermoset materials used extensively in structural and specialty in composite applications because they offer a unique combination of properties that are unattainable with other thermoset resins. Available in wide variety of physical forms from low-viscosity liquid to high-melting solids, they are amenable to a wide range of process and applications. Epoxy resins show the best performance characteristics of all the resin used in the marine industry in which weight reduction is extremely important for competitive advantages (Mallick, P. K., 2007).