

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Autonomous Maintenance Programme For Milling Machine

Thesis submitted in accordance with the requirements of the Universiti Teknikal Malaysia Melaka for Degree of Bachelor of Manufacturing Engineering (Manufacturing Management)

By

Abdul Majid bin Ali

Faculty of Manufacturing Engineering MAY 2008

🔘 Universiti Teknikal Malaysia Melaka

UNIVERSI	TI TEKNI	KAL MALAY	SIA MELAKA
BOI	RANG PENGE	SAHAN STATUS T	ESIS*
JUDUL: <u>AUTONOMOUS MA</u>	INTENANCE I	PROGRAMME FOR	MILLING MACHINE
SESI PENGAJIAN : <u>2007/20</u>	08		
Saya <u>.</u>	ABDU	L MAJID BIN ALI	
mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut: 1 - Tesis adalah hak milik Universiti Teknikal Malaysia Melaka			
 Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (√) 			
	(Mengandu atau keper AKTA RAH	ungi maklumat ya ntingan Malaysia y SIA RASMI 1972)	ng berdarjah keselamatan ⁄ang termaktub di dalam
TERHAD	(Mengandı oleh organ	ungi maklumat TE Iisasi/badan di ma	RHAD yang telah ditentukan ana penyelidikan dijalankan)
√ TIDAK TERHAD	-		Disahkan oleh:
(TANDATANGAN PI	ENULIS)	(TA	NDATANGAN PENYELIA)
Alamat Tetap: AC 49, KAMPUNG PADANG RUMBIA, JALAN TOK MUDA YAAKOB,		Cop Rası - -	ni:
26640, PEKAN, PAHANG	D. M.	- C Universiti Tel	knikal Malaysia Melaka
Tarikh: <u>5th MAY 2008</u>		Tarikh:	5 th MAY 2008
* Tesis dimaksudkan sebagai tesis disertasi bagi pengajian secara ke ** Jika tesis ini SULIT atau TERHA dengan menyatakan sekali sebab	bagi Ijazah Do erja kursus dan D, sila lampirk dan tempoh te	oktor Falsafah dan Sa periyelidikan, atau an surat daripada pi esis ini perlu dikelasi	arjana secara penyelidikan, atau Laporan Projek Sarjana Muda (PSM) hak berkuasa/organisasi berkenaan kan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Autonomous Maintenance Programme For Milling Machine" is the results of my own research except as cited in references.

Signature:Author's Name:ABDUL MAJID BIN ALIDate:5th MAY, 2008

APPROVAL

This PSM submitted to the senate of UTeM and has been as partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Management). The member of the supervisory committee is as follow:

.....

Wan Hasrulnizzam Wan Mahmood Main Supervisor

ABSTRACT

This project is developed as a preliminary study on KONDIA KP-90 Milling Machine located in Institut Kemahiran MARA Jasin, Melaka towards Autonomous Maintenance implementation. This project focus on the first three steps in normal Autonomous Maintenance activities which are included Initial Cleaning, Countermeasure to Abnormalities and Standardization of Problem Solving. Abnormalities of the machine with factors of safety, function and physical were analysed. From the results, dirty abnormalities were happened most and the physical of the machine was most affected by those abnormalities. Most of abnormalities found during this project duration have been tackled; however, there are several abnormalities can not be solved due to various reasons which discussed in this report.

Keywords: Autonomous Maintenance, IKM, Milling Machine, KONDIA.

ABSTRAK

Projek ini dibangunkan bertujuan sebagai kajian permulaan ke arah Program Penjagaan Autonomous untuk Mesin Kisar Menegak KONDIA KP-90 yang terdapat di Institut Kemahiran MARA Jasin, Melaka. Projek ini ditumpukan kepada tiga langkah pertama aktiviti Program Penjagaan Autonomous iaitu Pembersihan Permulaan, Langkah – Langkah Mengatasi Kecacatan dan Piawaian Kepada Penyelesaian Masalah. Hampir kesemua kecacatan – kecacatan yang berlaku pada mesin telah dapat diatasi. Walau bagaimanapun, terdapat beberapa kecacatan yang tidak dapat diatasi atas beberapa sebab dan dibincangkan selanjutnya di dalam lapuran ini.

v

DEDICATION

To my beloved wife, my children, Aishah Mudrikah, Muhammad Mujahid, Muhammad Musyrif, Aishah Munirah, and Aishah Muzhirah. Their cooperation and understanding were much appreciated.

To my supervisor, Mr. Wan Hasrulnizzam bin Wan Mahmood who always put my self beyond my own expectation.

To my very sincere and close belated friend, Allahyarham Mr. Affandy bin Zakaria, a staff in Manufacturing Department, IKM Jasin, who has passed away in my final visit of this project.

Finally, to all my colleagues in BMFU for their support and team spirit.

ACKNOWLEDGEMENTS

First of all, my acknowledgement goes to Majlis Amanah Rakyat (MARA) as a sponsor to my study in pursuing a Degree in Manufacturing Engineering.

I would like to thank my Project Supervisor, Mr. Wan Hasrulnizzam bin Wan Mahmood for his thought and continues guidance towards this project.

I also would like to thank all academic staffs in UTeM for teaching me so many things that I've never been thought before. Also to all staffs in other departments in this university for the cooperation they have given.

Abdul Majid Ali

TABLE OF CONTENTS

Declarationii
Approvaliii
Abstractiv
Abstrakv
Dedicationvi
Acknowledgementsvii
Table of contentsviii
List of figuresxi
List of tables xiv
List of abbreviation, symbol, specialized nomenclaturexv
1. INTRODUCTION
1.1 Background1
1.2 Problem Statement
1.3 Objectives of The Project
1.4 Scope of The Project
1.5 Importance of The Project
1.6 Report Outline
2. AUTONOMOUS MAINTENANCE
2.1 What is Maintenance?
2.1.1 Maintenance Objectives
2.1.2 Benefits/Importance of Maintenance7
2.1.3 Maintenance Strategy
2.1.3.1 Break Down Maintenance/Corrective Maintenance
2.1.3.2 Fixed Time Maintenance/Preventive Maintenance

	2.1.	3.3 Condition Based Maintenance	10
	2.1.	3.4 Opportunistic Maintenance	12
	2.1.	3.5 Design-out Maintenance	13
2.2	2 TPN	M: An Introduction	13
	2.2.1	TPM Definition	14
	2.2.2	Development of TPM In Japan	15
	2.2.3	TPM Concept	18
	2.2.4	TPM Goals	19
	2.2.5	TPM Benefits	21
	2.2.6	TPM Pillar Models	22
2.	3 Intr	oduction to Autonomous Maintenance	24
	2.3.1	Objectives of Autonomous Maintenance	25
	2.3.2	Benefits of Autonomous Maintenance	26
	2.3.3	Steps in Implementing Autonomous Maintenance	27
	2.3.4	Fuguai Tag	30
3. MI	LLIN	G MACHINE	32
3.	1 Rat	ionale of Choosing The Milling Machine	32
3.	2 Intr	oduction to Milling Machine	32
3.	3 Тур	bes of Milling Machine	33
3.	4 KO	NDIA KP-90 Vertical Milling Machine	36
	3.4.1	Vertical Miiling Machine Main Features	37
	3.4.2	KONDIA Variable Speed Headstock	40
	3.4.3	Milling Machine Accessories	42
	3.4.4	An Example of Milling Operation Using KONDIA KP-90	
		Vertical Milling Machine	46
	3.4.5	General Maintenance for KONDIA KP-90 Milling Machine	49
3	5 Ger	neral Safety Rules for Milling Machine	

4. METHO	DOLOGY	
4.1 Intr	oduction	54
4.2 Plan	nning of The Project	54
4.3 Dat	a Collection	
4.3.1	Machine Observation Method	
4.3.	1.1 Informations On <i>Fuguai</i> Tag	57
4.3.	1.2 Check Sheet Form	57
4.3.2	Informal Meeting	
4.3.3	Group Discussion Method	58
4.3.4	Internet, Books and Machine Manual	
4.4 Gar	ntt Chart	
4.5 Dat	a Analytical Techniques	61
4.5.1	Pareto Diagram	61
4.5.2	Trend Analysis	61
4.5.3	Charts	61
5. ANALY	SIS AND DISCUSSION	62
5.1 Init	ial Cleaning	
5.1.1	Machine Mapping	63
5.1.2	Definition Of Fuguais	
5.2 Fine	dings On Initial Cleaning	71
5.3 Res	ults And Analysis	74
5.3.1	Problems In Countermeasure Step	83
6. CONCL	USION AND RECOMMENDATIONS	86
6.1 Cor	nclusion	
6.2 Rec	commendations Of Current Project	88
6.3 Rec	commendations For Further Project	
REFERENC	CES	90

APPENDICES

- A Variable Speed Headstock Blue Print
- B Machine Feed Controller Mechanism Blue Print
- C Electrical Circuit Drawing
- D Check Sheet Form

LIST OF FIGURES

2.1: How Successful Maintenance Management Can Maximize Profit	8
2.2: Flow Diagram of A Condition Monitoring Procedure	11
2.3: TPM Pillars - Nakajima Model	22
2.4: TPM Pillars - Yoemans and Millington Model	23
2.5: TPM Pillars - Steinbacher and Steinbacher Model	23
2.6: TPM Pillars - Society of Manufacturing Engineers Models	23
2.7: TPM House of Pillars	24
2.8: Example of Fuguai Map For A Machine And Its Description.	31
3.1: An Example of Vertical Milling Machine	34
3.2: An Example of Horizontal Milling Machine	35
3.3: KONDIA KP-90 Vertical Milling Machine	37
3.4: Basic Features of A Vertical Milling Machine And Its X, Y, And Z axes	38
3.5: Overall Dimension And Travel Dimension of KONDIA KP-90 Machine	40
3.6: KONDIA Variable Speed Headstock	41
3.7: General Description of Variable Speed Headstock	41
3.8: Typical End Mill Cutters	42
3.9: A Face Mill	43
3.10: Cutter Mounted Into Collet And Arbor	43
3.11: A Plain Vise (Left) And A Swivel Vise (Right).	44
3.12: Indexing Head And Accessories (Left), And Its Main Features (Right)	45
3.13: The Rotary Table Being Aligned To Its Concentric Axis	46
3.14: (a) Part Drawing; (b) Marked Workpiece	46
3.15: (a) A Plain Vise Being Aligned Using Dial Indicator; (b) Workpiece	
Being Clamped On Top Of Parallel Bars	47

3.16: (a) An End Mill Cutter Cut The Slot; (b) Measuring Workpiece	
Shoulder Using External Micrometer	47
3.17: (a) An Example Of Tee-slot Cutter; (b) A Tee-slot Being Cut	48
3.18: (a) A Depth Micrometer Being Use; (b) The Female Tee-slot	49
3.19: 5 Grease Points For KONDIA KP-90 Milling Machine Headstock	50
3.20: A Face Shield	52
4.1: Flowchart Of The Project	55
4.2: Example Of Pink Fuguai Tag (a) And Yellow Fuguai Tag (b).	57
5.1: Five Main Parts Of Vertical Milling Machine From Side View	63
5.2: Five Main Parts Of Vertical Milling Machine From Front View	64
5.3: Parts Configuration For Variable Speed Head Compartment From Side	
View (Left) And Front View (Right)	65
5.4: Parts Configuration For Overarm, Column, And Switch Box From Rear	
View (Left) And Side View (Right)	65
5.5: Parts Configuration For Machine Table And Vice From Front View (Upper)	
And Side View (Lower)	66
5.6: Parts Configuration For Saddle From Front View (Upper) And Side	
View (Lower)	67
5.7: Parts Configuration For Coolant Reservoir, Knee, And Machine Surrounding	
From Front View (Left) And Side View (Right)	67
5.8: Fuguais Detected Were Marked With Tags, From Front View (Left) And	
Side View (Right)	71
5.9: Misplaced Fuguais Were Re-arranged To Its Proper Position	74
5.10: The Decreasing Trends Of Fuguais In Each Visit	76
5.11: 5 Areas Of Machine And Its Fuguais Found	77
5.12: Pareto Diagram Of Four Fuguai Classification And Its Percentage	78
5.13: Comparison Between Week 1 And Week 8 Of Fuguai Classification	78
5.14: Overall Results Of Fuguais Category During 8 Weeks	79
5.15: Comparison Of Fuguais Category Trend Along The Project	80

5.16: Safety Fuguais Were Decreased Towards End Of The Project		
5.17: Function Fuguais (a) And Physical Fuguais (b) Were Decreased		
Towards End Of The Project		
5.18: Rusty Coolant Reservoir (Left) And A Replaced Second Hand Filter (Right)	83	
5.19: The Torn Rubber Sheet (a), High Temperature Machining Chips		
Accumulated Over The Inner Saddle Slideways (b), And The		
Replacement Of Rubber Sheet Using Local Product (c)	84	
5.20: Rust In Bottom Corner Piece Of Switch Board		

LIST OF TABLES

2.1: TPM Development In Japan	17
2.2: Autonomous Maintenance steps in TPM activity.	27
3.1: Typical Suitable Product For Centralized Lubrication	50
4.1: Gantt Chart for The Project	60
5.1: Typical Dirties Found On The Machine	68
5.2: Typical Broken/Loose Fuguais Found On The Machine	69
5.3: Typical Misplace Fuguais Found On The Machine	70
5.4: Dirty Fuguais, Tools Used, And Results After Cleaning Process	72
5.5: Three Types Of Broken/Loose Fuguais Solutions	73
5.6: Summarized Of Fuguais Found During Eight Weeks Of Visit	75

LIST OF ABBREVIATIONS, SYMBOL, AND SPECIALISED NOMENCLATURE

AM	-	Autonomous Maintenance
CANDOS	-	Cleanliness, Arrangement, Neatness, Discipline, Order, and Safety
CNC	-	Computer Numerical Control
Co.	-	Company
FMS	-	Flexible Manufacturing System
IGNOU	-	Indira Ghandi National Open University
HSS	-	High Speed Steel
IKM	-	Institut Kemahiran MARA
Inc.	-	Incorporated
JIPE	-	Japanese Institute of Plant Engineers
JIPM	-	Japan Institute of Plant Maintenance
MARA	-	Majlis Amanah Rakyat
MI	-	Maintainability Improvement
MP	-	Maintenance Prevention
OEE	-	Overall Equipment Efficiency
OPE	-	Overall Plant Efficiency
PDCA	-	Plan, Do Check, and Action
PM	-	Preventive Maintenance
rpm	-	round per minute
SGA	-	Small Group Activity
TPM	-	Total Productive Maintenance
TQM	-	Total Quality Management
UK	-	United Kingdom
US	-	United States of America
5S	-	Seiri, Seiton, Seiso, Seiketsu, and Shitsuke.

CHAPTER 1 INTRODUCTION

1.1 Background

Production organizations are usually concerned with converting inputs such as raw materials, labor and processes into finished products of higher value at minimum cost satisfying the customer needs. In order to achieve maximum return on investments the production systems will have to minimize plant downtime, increase productivity, improve quality and deliver orders to customers. This has brought the role of maintenance into an important issue (School of Management Studies, IGNOU, 2004).

The increased emphasis on equipment availability, performance, quality, environment conditions and safety considerations has rise up maintenance functions. Total Productive Maintenance (TPM) is a maintenance program which involves a concept for maintaining plants and equipment. TPM brings maintenance into focus as a necessary and vitally important part of the business. It is no longer regarded as a non-profit activity. According to Venkatesh (2006), the goals of the TPM program is to markedly increase production, to hold emergency and unscheduled maintenance to a minimum, and at the same time, increasing employee morale and job satisfaction.

One of the important factor in TPM is Autonomous Maintenance (AM). This type of maintenance encouraged operator to sense any abnormalities on the machine and maintain common problem by him/herself. By this way, the machine will always be in its idle condition while the operator learns more and feel sense of ownership about the machine.

1.2 Problem Statement

Milling machines are very useful in manufacturing engineering. Its price is quite high that worth to maintain it rather than to buy a new one. In order to prevent it from deteriorating, correct applications of maintenance works are essential. This type of machines are available in every Manufacturing Department in five Institut Kemahiran MARA (IKM) located in Jasin, Melaka; Pekan, Pahang; Johor Bahru, Johor; Lumut, Perak; and Kampung Pandan, Kuala Lumpur. In each IKM, twelve milling machines are being use by their students. Total of sixty milling machines have costs Majlis Amanah Rakyat (MARA) millions of ringgit.

In order to save the continuous money spending for conventional maintenance, an introduction of AM into Manufacturing Department in IKM has been applied in this project. This type of maintenance familiarizes the operator (student) itself to do routine observations on their machine. By doing this, early detection of abnormalities and major problems are done to reduce parts replacement that will increase maintenance budgets. It also reduce chances of accident happened and reduce the burden of technician works.

1.3 Objectives of The Project

This project has several objectives that have to be achieved which are:

- (a) To study current maintenance activity towards the machine in IKM Jasin.
- (b) To identify and analyze the abnormalities on KONDIA Vertical Milling Machine being use by students in Manufacturing Department, IKM Jasin, Melaka.
- (c) To set the preliminary activity for an AM Program for the selected milling machine above.

1.4 Scope of The Project

This project was planned to develop a pilot activity of AM Program in Manufacturing Department, IKM Jasin, Melaka. A KONDIA Vertical Milling Machine has been selected to be used for this project has been performed from July 2007 to March 2008. A technique called *Fuguai* Mapping has been used to determine abnormalities on the machine. Group discussion about the machine condition also will be conducted onto students that operated the machine.

Only the AM concepts under Total Productive Maintenance (TPM) will be taken into account for this project. Data gathered were used to analyzed and developed pilot activity of AM Program for the machine. Although there are seven steps of implementing AM, this project will only go through step one to step three as time constraints for other steps to be implemented. The consequence of this project may not be applicable to other projects with different types of machines specifically for the milling machines.

1.5 Importance of The Project

The importances of this project are:

- 1. To provide an initial step of introducing AM Program among IKM students and personnel in Manufacturing Department of IKM
- 2. To increase students safety condition while working with this type of machine.
- 3. To enhance the knowledge about this kind of maintenance for the students as they will be available in industrial working market shortly.
- 4. To reduce major maintenance works towards the similar milling machines in Manufacturing Department, IKM.

1.6 Report Outline

This report writing contains six chapters. Chapter 1 introduces the background, problem statement, objectives, scope, and importance of the study and Chapter 2 elaborates on the

literature review of maintenance and on the concept of AM. Chapter 3 describes about the milling machine, focusing on the KONDIA KP-90 Vertical Milling Machine.

Chapter 4 concludes the research methodology of this project. This chapter discusses the methodology that were use to gather data required to support the development and analysis of the study. This chapter also shows the process planning, flowchart, data gathering method and data analytical technique. Next is Chapter 5 that contains the results and discussions about the development of AM program for KONDIA KP-90 Vertical Milling Machine. Lastly, Chapter 6 provides the recommendations and the conclusion of the whole project.

CHAPTER 2 AUTONOMOUS MAINTENANCE

2.1 What is Maintenance?

In general, maintenance can be defined as all activities necessary to keep a system and all of its components in working order (Stephen, 2004). According to Geraerds (1985) maintenance is defined as all activities aimed at keeping an item in, or restoring it to, the physical state considered necessary for the fulfillment of its production function. Maintenance is the action necessary to sustain or restore the machine and equipment up to the performance needed. It includes inspection, overhaul, repair, preservation and replacement of parts. Maintenance also can be defined as the management of avoiding failure.

Maintenance is a combination of science, art and philosophy. Its execution relies on science, art of maintenance depends on individual aptitude and its philosophy should fit to the operation or organization it serves (School of Management Studies, IGNOU, 2004). It is an important factor in product quality and can be used as a strategy for successful competition. Many companies consider maintenance as a necessary activity but increase an expense to the organization and a non-value-added function. More progressive companies view maintenance as a way to reduce costs of producing their product or providing their services. Many companies are using this cost advantage to lower prices and increase their life cycle profits.

2.1.1 Maintenance Objectives

The objective of a production department in any manufacturing factory is to achieve a planned output in a specified time. This planned output is normally a function of sales demand. It determines the long term and short term production plans fixing the availability requirements of the factory. At any point of time the condition of machine units of a factory can be represented as one of the following states (Kelly, 1984) :

- (a) In production and only 'running maintenance' can be carried out.
- (b) Not being used for production and is available for maintenance without any production loss.
- (c) Out of production because of scheduled maintenance and will affected production loss.
- (d) Unexpected breakdown and undergoing emergency maintenance. It affected production loss and the maintenance is difficult to plan.
- (e) Unexpected breakdown and waiting for maintenance because of shortage of maintenance resources. It affected production loss.

To avoid such uncertain machine condition as mentioned above, maintenance should play its role to control the production loss. Other than that, it also means for safety purposes.

The main maintenance objectives can be stated as follows (Kelly, 1984):

- (a) To enhance overall equipment effectiveness by maximizing availability, performance and quality rates and obtaining maximum return on investments.
- (b) To extend the useful life of assets by minimizing wear and deterioration.
- (c) To ensure operational readiness of all equipment at all times and for emergency use.
- (d) To ensure safety of personnel using facilities and achieve acceptable safety.
- (e) To provide all this at minimum resource cost.

2.1.2 Benefits/Importance of Maintenance

In order to achieve world-class performance, more and more companies are undertaking efforts to improve quality and productivity and reduce costs. For more and more companies, part of this effort has included an examination of the activities of the maintenance function. Effective maintenance is critical to many operations. It extends equipment life, improves equipment availability and retains equipment in proper condition. Conversely, poorly maintained equipment may lead to more frequent equipment failures, poor utilization of equipment and delayed production schedules. Misaligned or malfunctioning equipment may result in scrap or products of questionable quality (Swanson, 2001). Finally, poor maintenance may mean more frequent equipment replacement because of shorter life.

According to Moubray (1994), the contribution of maintenance to the performance and profitability of manufacturing systems is to ensure that the plant can perform according to the agreed condition or what the organization expected, by balancing between the allocation of maintenance resources and the plant output.

With the change in manufacturing processes emphasizing lean manufacturing, the reliability and availability of plant are vitally crucial. Poor machine performance, downtime and ineffective plant maintenance lead to the decrease in the profit, loss of market opportunities, loss of production and so on (Wilson, 1999).

Dunn (1996) explained, through his equations, that effective maintenance helps to increase the revenues by increasing the equipment performance and plant capacity, which will in turn maximize the volume of sales. Figure 2.1 below explains the reasons why good maintenance management can maximize the organization profit.