

NATIONAL TECHNICAL UNIVERSITY COLLEGE OF MALAYSIA

A Search Method for Flowshop Scheduling Problem

Thesis submitted in accordance with the requirements of the National Technical University College of Malaysia for the Degree of Bachelor of Engineering (Honours) Manufacturing (Process)

By

Mohd Sairuzuan bin Mohd Rashid

Faculty of Manufacturing Engineering April 2006

C Universiti Teknikal Malaysia Melaka

200			
	B	ORANG PENGES	AHAN STATUS TESIS*
JUDUL:	A SEARCH METH	HOD FOR FLOWSH	OP SCHEDULING PROBLEM
SESI PEN	IGAJIAN : 2/200	5-2006	
Saya _		MOHD SAIRUZU	JAN BIN MOHD RASHID
Perpusta	akaan Kolej Uni		ana/Doktor Falsafah) ini disimpan di Kebangsaan Malaysia (KUTKM) dengan
 Perpending mem Perpending antai 	ustakaan Kolej Ibuat salinan un	Universiti Teknik tuk tujuan penga arkan membuat s	ti Teknikal Kebangsaan Malaysia. al Kebangsaan Malaysia dibenarkan ajian sahaja. alinan tesis ini sebagai bahan pertukaran
	SULIT	atau kepent	gi maklumat yang berdarjah keselamatan ingan Malaysia yang termaktub di dalam A RASMI 1972)
	TERHAD	the second se	gi maklumat TERHAD yang telah ditentuk asi/badan di mana penyelidikan dijalanka
\checkmark	TIDAK TERH	AD	Dischland alaks
	hopent.	al	Disahkan oleh:
(TANDATANGAN	PENULIS)	(TANDATANGAN PENYELIA)
Alamat Tetap: JALAN JAMBATAN SULTAN IDRIS SHAH II, 32600 BOTA KANAN, PERAK.		TAN IDRIS	Cop Rasmi: Fakuli Kejuruleraan Permualan Kalej Universiti Teknikal Kebanesaan Malaj Karung Berkunci 1200, Ayer Kelah 75450 Melaka
PERAK.			Tarikh: 08 JUNE OF

KOLEJ UNIVERSITI TEKNIKAL KEBANGSAAN MALAYSIA Karung Berkunci 1200, Ayer Keroh, 75450 Melaka Tel: 06-233 2421, Faks: 06 233 2414

Tel : 06-233 2421, Faks : 06 233 Email : fkp@kutkm.edu.mv

FAKULTI KEJURUTERAAN PEMBUATAN

Rujukan Kami (Our Ref) : Rujukan Tuan (Your Ref): 19 May 2006

Pustakawan Perpustakawan Kolej Universiti Teknikal Kebangsaan Malaysia KUTKM, Ayer Keroh MELAKA.

Saudara,

PENGKELASAN TESIS SEBAGAI SULIT/TERHAD - TESIS SARJANA MUDA KEJURUTERAAN PEMBUATAN (PROSES PEMBUATAN): MOHD SAIRUZUAN BIN MOHD RASHID TAJUK: A SEARCH METHOD FOR FLOWSHOP SCHEDULING PROBLEM

Sukacita dimaklumkan bahawa tesis yang tersebut di atas bertajuk

"A SEARCH METHOD FOR FLOWSHOP SCHEDULING PROBLEM" mohon dikelaskan sebagai terhad untuk tempoh lima (5) tahun dari tarikh surat ini memandangkan ia mempunyai nilai dan potensi untuk dikomersialkan di masa hadapan.

Sekian dimaklumkan. Terima kasih.

"BERKHIDMAT UNTUK NEGARA KERANA ALLAH"

Yang benar,

DR BAGAS WARDONO, PENSYARAH, Fakulti Kejuruteraan Pembuatan (Penyelia) 206-2332557

APPROVAL

This thesis submitted to the senate of KUTKM and has been accepted as fulfillment of the requirement for the Degree of Bachelor of Manufacturing Engineering (Honours) (Manufacturing Process). The members of the supervisory committee are as follows:

Main supervisor Faculty of Manufacturing Engineering

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declare this thesis entitled "A Search Method for Flowshop Scheduling Problem" is the results of my own research except as cited in the reference.

Signature	:
Author's Name	: Mohd Sairuzuan Bin Mohd Rashid
Date	: 19 April 21, 2006

DEDICATION

I want to dedicate this work to my family, my supervisor Dr Bagas Wardono, all Faculty of Manufacturing Engineering's lecturers, my housemate and also to all my friends for their endless support for this thesis.

ACKNOWLEDGEMENTS

First of all, I would like to express my appreciation and grateful to Allah S.W.T, The Almighty for giving me strength and ability to carry out all the tasks and completed this final year project for the Degree of Bachelor of Engineering (Honours) Manufacturing (Process).

I wish to express my sincere gratitude to Dr. Bagas Wardono of National Technical University College of Malaysia for his supervising this thesis. He read the manuscript very carefully and made many valuable suggestions and comments, which improved the accuracy and quality of this thesis. Without his guidance as my supervisor, this thesis may not be finished. Thank for your guidance and comments to me.

I am also grateful to all Faculty of Manufacturing Engineering's lecturer for giving time and space to complete this thesis. They always encourage to do the best in our final year project (PSM).

Finally, I thank my parents and friends for their endless support and encouragement.

ABSTRACT

Search method is one of the approaches that had been considered important in improving the job completion time in the flowshop scheduling. There are many methods available to obtain such solutions, including constructive heuristics, search methods and enumeration. Search method is much better compare to the enumeration technique and constructive heuristics because this technique is suitable for large size problems and gives good results without depending on the structure of the algorithms and the structure of the problems. In this study, analysis will be develop base on the search method to solve the scheduling problem (minimize the *makespan*).

TABLE OF CONTENTS

Acknowledgment ii Abstract iii Table of Contents iv List of Figures vi List of Tables viii Sign and Symbols x 1. INTRODUCTION 1 1.1 Background 1 1.2 Problem Statements 1 1.3 Objectives of the Research 2 1.4 Project Scope 2 2. LITERATURES REVIEW 3 2.1 Scheduling Problems 3 2.2 Flowshop scheduling problem 4 2.3 Previous Works on Search Methods on Flowshop Scheduling 7 3.1 Tabu Search 7 3.1.1 Tabu search features 9 3.1.2 Tabu Search Algorithm 10 3.2 Local Improvement Procedure 12 3.2.1 Local Improvement Procedure Algorithm 13 3.2.2 Iterated Local Search Algorithm 13	Dedications	i
Table of Contents iv List of Figures vi List of Tables viii Sign and Symbols x I. INTRODUCTION 1 1.1 Background 1 1.2 Problem Statements 1 1.3 Objectives of the Research 2 1.4 Project Scope 2 2. LITERATURES REVIEW	Acknowledgm	entii
List of Figures .vi List of Tables .viii Sign and Symbols .x 1. INTRODUCTION .1 1.1 Background .1 1.2 Problem Statements .1 1.3 Objectives of the Research .2 1.4 Project Scope .2 2. LITERATURES REVIEW .3 2.1 Scheduling Problems .3 2.2 Flowshop scheduling problem .4 2.3 Previous Works on Search Methods on Flowshop Scheduling .4 3. SEARCH METHODS .7 3.1.1 Tabu Search features .9 3.1.2 Tabu Search Foundations and the Descent Method .9 3.1.3 Tabu Search Algorithm .10 3.2 Local Improvement Procedure .12 3.2.1 Local Improvement Procedure Algorithm .13	Abstract	iii
List of Tables .viii Sign and Symbols .x 1. INTRODUCTION 1 1.1 Background .1 1.2 Problem Statements 1 1.3 Objectives of the Research .2 1.4 Project Scope .2 2. LITERATURES REVIEW .3 2.1 Scheduling Problems .3 2.2 Flowshop scheduling problem .4 2.3 Previous Works on Search Methods on Flowshop Scheduling .4 3. SEARCH METHODS .7 3.1.1 Tabu Search .7 3.1.2 Tabu Search Foundations and the Descent Method .9 3.1.3 Tabu Search Algorithm .10 3.2 Local Improvement Procedure .12 3.2.1. Local Improvement Procedure Algorithm .13	Table of Conte	ntsiv
Sign and Symbols	List of Figures	vi
1. INTRODUCTION. 1 1.1 Background 1 1.2 Problem Statements. 1 1.3 Objectives of the Research. 2 1.4 Project Scope. 2 1.4 Project Scope. 2 2. LITERATURES REVIEW. 3 2.1 Scheduling Problems 3 2.2 Flowshop scheduling problem. 4 2.3 Previous Works on Search Methods on Flowshop Scheduling. 4 3. SEARCH METHODS. 7 3.1.1 Tabu Search 7 3.1.2 Tabu Search Foundations and the Descent Method. 9 3.1.3 Tabu Search Algorithm. 10 3.2 Local Improvement Procedure. 12 3.2.1 Local Improvement Procedure Algorithm. 13	List of Tables	viii
1.1 Background .1 1.2 Problem Statements .1 1.3 Objectives of the Research .2 1.4 Project Scope .2 2. LITERATURES REVIEW .3 2.1 Scheduling Problems .3 2.2 Flowshop scheduling problem .4 2.3 Previous Works on Search Methods on Flowshop Scheduling .4 3. SEARCH METHODS .7 3.1.1 Tabu Search .7 3.1.2 Tabu Search Foundations and the Descent Method .9 3.1.3 Tabu Search Algorithm .10 3.2 Local Improvement Procedure .12 3.2.1 Local Improvement Procedure Algorithm .13	Sign and Symb	polsx
1.1 Background .1 1.2 Problem Statements .1 1.3 Objectives of the Research .2 1.4 Project Scope .2 2. LITERATURES REVIEW .3 2.1 Scheduling Problems .3 2.2 Flowshop scheduling problem .4 2.3 Previous Works on Search Methods on Flowshop Scheduling .4 3. SEARCH METHODS .7 3.1.1 Tabu Search .7 3.1.2 Tabu Search Foundations and the Descent Method .9 3.1.3 Tabu Search Algorithm .10 3.2 Local Improvement Procedure .12 3.2.1 Local Improvement Procedure Algorithm .13		
1.2 Problem Statements. 1 1.3 Objectives of the Research. 2 1.4 Project Scope. 2 2. LITERATURES REVIEW. 3 2.1 Scheduling Problems 3 2.2 Flowshop scheduling problem. 4 2.3 Previous Works on Search Methods on Flowshop Scheduling. 4 3. SEARCH METHODS. 7 3.1 Tabu Search 7 3.1.1 Tabu search features. 9 3.1.2 Tabu Search Foundations and the Descent Method. 9 3.1.3 Tabu Search Algorithm. 10 3.2 Local Improvement Procedure Algorithm. 13		
1.3 Objectives of the Research. .2 1.4 Project Scope. .2 2. LITERATURES REVIEW. .3 2.1 Scheduling Problems .3 2.2 Flowshop scheduling problem. .4 2.3 Previous Works on Search Methods on Flowshop Scheduling. .4 3. SEARCH METHODS. .7 3.1 Tabu Search .7 3.1.1 Tabu search features. .9 3.1.2 Tabu Search Foundations and the Descent Method. .9 3.1.3 Tabu Search Algorithm. .10 3.2 Local Improvement Procedure Algorithm. .13	C	
1.4 Project Scope. .2 2. LITERATURES REVIEW. .3 2.1 Scheduling Problems .3 2.2 Flowshop scheduling problem. .4 2.3 Previous Works on Search Methods on Flowshop Scheduling. .4 3. SEARCH METHODS. .7 3.1 Tabu Search. .7 3.1.1 Tabu search features. .9 3.1.2 Tabu Search Foundations and the Descent Method. .9 3.1.3 Tabu Search Algorithm. .10 3.2 Local Improvement Procedure Algorithm. .13		
2. LITERATURES REVIEW. 3 2.1 Scheduling Problems 3 2.2 Flowshop scheduling problem. 4 2.3 Previous Works on Search Methods on Flowshop Scheduling. 4 3. SEARCH METHODS. 7 3.1 Tabu Search. 7 3.1.1 Tabu search features. 9 3.1.2 Tabu Search Foundations and the Descent Method. 9 3.1.3 Tabu Search Algorithm. 10 3.2 Local Improvement Procedure. 12 3.2.1. Local Improvement Procedure Algorithm. 13		
2.1 Scheduling Problems	1.4 Project S	cope2
2.1 Scheduling Problems		
2.2 Flowshop scheduling problem. 4 2.3 Previous Works on Search Methods on Flowshop Scheduling. 4 3. SEARCH METHODS. 7 3.1 Tabu Search. 7 3.1.1 Tabu search features. 9 3.1.2 Tabu Search Foundations and the Descent Method. 9 3.1.3 Tabu Search Algorithm. 10 3.2 Local Improvement Procedure Algorithm. 13	2. LITERATU	JRES REVIEW
2.3 Previous Works on Search Methods on Flowshop Scheduling.	2.1 Schedulin	ng Problems
3. SEARCH METHODS 7 3.1 Tabu Search 7 3.1.1 Tabu search features 9 3.1.2 Tabu Search Foundations and the Descent Method 9 3.1.3 Tabu Search Algorithm 10 3.2 Local Improvement Procedure 12 3.2.1. Local Improvement Procedure Algorithm 13	2.2 Flowshop	p scheduling problem
3.1 Tabu Search	2.3 Previous	Works on Search Methods on Flowshop Scheduling4
3.1 Tabu Search73.1.1 Tabu search features93.1.2 Tabu Search Foundations and the Descent Method93.1.3 Tabu Search Algorithm103.2 Local Improvement Procedure123.2.1. Local Improvement Procedure Algorithm13		
3.1.1Tabu search features93.1.2Tabu Search Foundations and the Descent Method93.1.3Tabu Search Algorithm103.2Local Improvement Procedure123.2.1Local Improvement Procedure Algorithm13	3. SEARCH M	IETHODS
3.1.2 Tabu Search Foundations and the Descent Method93.1.3 Tabu Search Algorithm	3.1 Tabu Sea	rch7
3.1.3 Tabu Search Algorithm	3.1.1 Tab	ou search features
3.2 Local Improvement Procedure	3.1.2 Tab	bu Search Foundations and the Descent Method9
3.2.1. Local Improvement Procedure Algorithm	3.1.3 Tab	vu Search Algorithm10
	3.2 Local Ir	nprovement Procedure
3.2.2. Iterated Local Search Algorithm	3.2.1. Loc	cal Improvement Procedure Algorithm
	322 Iter	ated Local Search Algorithm
3.3 Genetic Algorithm15	J.2.2. Iter	A1 'd1 15
3.3.1. Operation of Genetic Algorithm16		Algorithm15
3.3.2. GA Algorithm16	3.3 Genetic A	

	3.3.2.1.	GA Chromosome	17
	3.3.2.2.	GA Crossover	17
	3.3.2.3.	GA Mutation	20
3.4 Simu	lated An	nealing	22
3.4.1.	The Bas	ic Iteration	22
	3.4.1.1.	The neighbors of a state	22
	3.4.1.2.	Transition probabilities	23
	3.4.1.3.	The annealing schedule	23
3.4.2.	Four bas	ic ingredients of Simulated Annealing	24
3.4.3.	Applicat	ions in Scheduling Problems	24
3.4.4.	Simulate	ed Annealing Algorithm	25
3.4.5.	Types of	f Simulated Annealing Algorithms	26

4. ME	4. METHODOLOGY		
4.1.	Analyze Problem		
4.2.	Problem Research	28	
4.3.	Study on Previous Research		
4.4.	Analysis the previous research		
4.5.	Conclude	28	

5. PREVIOUS STUDY OF SEARCH METHOD BASED ON FLOWSHOP SCHEDULING PROBLEM

5.1.	Paper 1: Simulated Annealing	.30
5.2.	Paper 2: Simulated Annealing	.34
5.3.	Paper 3: Simulated Annealing, Genetic Algorithm, Tabu Search	.35
5.4.	Paper 4: Genetic Algorithm	.40
5.5.	Paper 5: Genetic Algorithm	.42
5.6.	Paper 6: Genetic Algorithm	.44
5.7.	Paper 7: Genetic Algorithm	.46
5.8.	Paper 8: Genetic Algorithm	.48
5.9.	Paper 9: Tabu Search	.50
5.10.	Paper 10: Tabu Search	.52
5.11.	Paper 11: Genetic Algorithm, Tabu Search	.54
5.12.	Paper 12: Tabu Search	.56

5.13. Paper 13: Simulated Annealing, Tabu Search, Local Search	58
5.14. Paper 14: Local Search	62
5.15. Paper 15: Local Search	65
5.16. Paper 16: Local Search	67
6. ANALYSIS	69
7. DISCUSSION	76
8. CONCLUSION	79
REFERENCES	80

- vi -

LIST OF FIGURES

1.1	The schematic of the flowshop with unlimited buffers.	2
3.1	Descent methods	10
3.2	Basic Tabu Search Algorithms by Monaldo Mastrolilli [IDSIA -	11
	Lugano (CH)]	
3.3	The Local Improvement Procedure	13
3.4	Iterated Local Search	14
3.5	Crossover techniques	18
3.6	Example of OBX, PPX, and OSX for nine jobs	19
3.7	INSERT, SWAP, and SWITCH mutation for flowshop problem	21
3.8	Simulated Annealing Algorithm	24
4.1	Process flow of the problem study	27
5.1	Machine configuration for paper 1	31
5.2	The K value in Cave, Nahavandi and Kouzani [1] algorithm	32
5.3	GT Crossover	36
5.4	The histogram of the best makespans obtained by the GT-GA after	37
	200 generations among 600 trials for the <i>mt10</i> problem	
5.5	Machine configuration by Kämäräinen, Vesa Ek, Nieminen and	40
	Ruuth [4]	
5.6	Gantt chart for Pinedo's Solution and the GA Solution	47
5.7	Modified schedule with machine downtime inserted	47
5.8	Modified schedule after rerunning the GA	47
5.9	Machine configuration of Bagas Wardono, Yahya Fathi [9] study	50
5.10	Watson, Whitley, and Howe [10] Computational results	53
5.11	Pseudocode for the tabu search framework	57
5.12	Swap and Shift Move	58
5.13	Solution quality vs. running time for problem instances ($n = 50$	60
	jobs.)	

5.14	Solution quality vs. running time for problem instances ($n = 50$	61
	jobs.)	
5.15	Solution quality vs. running time for problem instances ($n = 50$	61

jobs.)

LIST OF TABLES

3.1	Tabu Search (TS) applications	8
4.1	PSM1 Activity Planning Table	29
4.2	PSM2 Activity Planning Table	29
5.1	Cave, Nahavandi and Kouzani [1] testing result	33
5.2	Comparing result of SGA, GTGA and optimal value	37
5.3	Result on Ten Trials using the Simulated Annealing Method ($R = 3,000$).	38
5.4	Yamada's [3] Initial and Last Temperatures.	38
5.5	Results of the Taillard benchmark problems by Yamada [3].	39
5.6	Kämäräinen, Vesa Ek, Nieminen and Ruuth [4] Computational results	41
5.7	Approximate computing time per one chromosome	41
5.8	Computational results by Rubén Ruiz, Concepción Maroto and	45
	Javier Alcaraz [6]	
5.9	Job Data for 8-job, 7-machine flow line example.	46
5.10	The parameters that A. Brizuela and Rodrigo Aceves [8] used	48
5.11	Dominance relations mean spacing (S), and ONVG for non-	49
	dominated fronts generated by nine algorithms. Instance 6 (75 jobs	
	20 machines)	
5.12	Statistics of algorithm performance for various problem	55
	dimensions	
5.13	Best results obtained for data sets of Taillard when treated as	60
	continuous flow-shop problem instances with total processing	
	time objective	
5.14	Average percentage deviation values	63
5.15	Minimum and average percentage deviations for the combined	64
	path based/swap neighborhood.	

5.16	Minimum and average percentage deviations for the single	54
	insertions and variable depth sequential insertions neighborhoods	
5.17	Average percentage deviation values for the randomized path	54
	based neighborhood	
5.18	Stützle [15] algorithm comparing with SA	66
5.19	Stützle [15] algorithm comparing with TS-GA	66
5.20	Comparing Tasgetiren, Liang, Sevkli and Gencyilmaz [16]	67
	algorithm	
5.21	Tasgetiren, Liang, Sevkli and Gencyilmaz [16] Computational	68
	result	

LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED NOMENCLATURE

TS	-	Tabu Search
LI	-	Local Improvement Procedure
LS	-	Local Search
GA	-	Genetic Algorithm
SA	-	Simulated Annealing
S	-	Current solution
n	-	Numbers of Job
т	-	Numbers of machine
p_{ij}	-	Processing times of the jobs at each machine
f(s)	-	Objective function
<i>N</i> (s)	-	Neighborhood
s'	-	Neighbor solution
C_{max}	-	The job completion time
$C_{max}(s')$	-	The job completion time (neighbor solution)
LI	-	Local Improvement Procedure
TS	-	Tabu Search
<i>T</i> (s,k)	-	Tabu list
FSP	-	Flowshop Scheduling Problem

CHAPTER I INTRODUCTION

1.1 Background

Today the economic for the nation for many countries including Malaysia is generated from the manufacturing industries sector. The main focus in the manufacturing industrial today is the number of production made in the specific duration. The incomes for the industries come from the sales of the production and these numbers of production are currently depending on the time taken to finish it. So, to maximize the production, one of the solutions is to minimize the time taken to complete the overall jobs or activities.

Arrangement for the job solution have to be determined that give the minimum time that have to be done. Many methods are available to obtain such solutions, including: constructive heuristics, search methods (i.e. Tabu Search and Local Improvement Procedure/Local Search), and enumeration. Enumeration technique will give the optimal solution to the problems, but for large problems, this technique is not suitable due to the large number of the solutions. Constructive heuristics might give good results depending on the structure of the algorithms and the structure of the problems. In this study, we will concentrate our focus on search method.

1.2 Problem Statement

One of the problems in industrial manufacturing sector is the flowshop scheduling. In the flowshop scheduling, a set of jobs must to go through several set of machines. It is not a difficult problem if the number of jobs or activities (n) and the number of machines (m) are small. The optimal solution can be determined using enumeration method. But the flowshop problems will be difficult to solve if the number of jobs or activities (n) and the number of machines (m) are small. The optimal solution can be determined using enumeration method. But the flowshop problems will be difficult to solve if the number of jobs or activities (n) and the number of machines (m) are considerably high. One of the solutions is using a search method to find the best jobs arrangement. The schematic of the basic flowshop is shown in figure 1.1 below.

There are many methods that can be applied to solve this problem but it is very difficult to determine which method is the best. So in this study, we will make research

on these four (4) different search methods, those are Tabu Search (TS), Local Improvement Procedure (LI)/Local Search (LS), Simulated Annealing (SA) and Genetic Algorithm (GA). Previous study on the search method will be analyzed and a discussion and analysis will be performed based on those study.

1.3 Objectives

The main target of this study is to understand the basic principle of the Search Method. Specifically the objectives of this study are:

- 1. To generate a deep understanding on all these four search method (TS, LS, SA GA) principles.
- 2. To study differences among search methods.
- 3. To evaluate the effectiveness of the previous algorithm by comparing the results among each others.
- 4. To come out with a conclusion regarding to the Search Method.

1.3 Project Scope

In this study, one of our purposes is to design an algorithm as one of solutions to the scheduling problem base on a search method but due to the time constrain, the algorithm is not able to complete. So we continued with making research on previous algorithm done by several people. The scopes for this project study are:

- 1. The requirements of the study.
- 2. The factors contribute to the problem
- 3. The solutions that will be consider for the problem

CHAPTER II LITERATURE REVIEW

2.1 Scheduling Problems

Scheduling has been defined as the allocation of resources over time to perform a collection of tasks. Scheduling is important in the design and management of a variety of systems with differing tasks and resources. The basic shop scheduling model consists of machines and jobs, each of which consists of a set of operations. Each operation has an associated machine on which it has to be processed for a given length of time. The processing times of operations of a job cannot overlap. Each machine can process at most one operation at a given time.

While each of these systems utilizes different resource classes, assigning times to activities requiring those resources remains the fundamental scheduling problem. It is the time element that distinguishes scheduling from other resource allocation problems. In general, there are two related decisions required as part of the scheduling process:

- 1. Sequencing the jobs to be processed through the machines.
- 2. Assignment of time for accomplishing each task.

Time assignment requires dividing tasks among resources and choosing starting times. It must consider relations among tasks such as precedence requirements as well as the availability of limited resources necessary for performing the tasks. Resource assignment in general must consider the availability of specific resource units as well as the suitability of a particular unit for a particular task. The interplay between the task time and resource assignment decisions is therefore at the heart of scheduling.

At this time, multitudes of scheduling problems are under research, rendering possible an abstract general presentation by grouping the main classical problems in five distinct classes:

- *Workshops with only one machine*: There is only one machine which must be used for scheduling the given jobs, under the specified constraints;
- *Flowshop*: There is more than one machine and each job must be processed on each of the machines the number of operations for each job is equal with the number of machines, the *j*th operation of each job being processed on machine *j*;

- *Jobshop*: The problem is formulated under the same terms as for the flowshop problem, having as specific difference the fact that each job has associated a processing order assigned for its operations.
- *Openshop*: The same similarity with the flowshop problem, the processing order for the operations being completely arbitrary the order for processing a job's operations is not relevant; any ordering will do.
- *Mixed workshop*: There is a subset of jobs for which a fixed processing path is specified, the other jobs being scheduled in order to minimize the objective function.

In this study, we focus our investigation on the flowshop scheduling problems with the objective to minimize the *makespan*, which is defined as the completion time of the last job on the last machine.

2.2. Flowshop scheduling problem

The flowshop scheduling problem can be defined as of *n* jobs, and a set of *m* machines. Each job *j* must be scheduled on a predetermined machine for a fixed amount of time, p_{ij} , without interruption, where P_{ij} is the processing time of job *j* on machine *i*, for j=1...,n and i=1...,m. No machine may process more than one operation at a time, and each job can only be processes by one machine.

Sequence dependent setup times are a tool for modeling a problem where there are different "classes" of operations which require machines to be reconfigured. For example two tasks in a machine shop may both be performed on the same drill press, but require different drill bits. In an instance of the flowshop scheduling problem with sequence dependent setup times, assign a class identifier C_{max} to each task and impose a fixed setup cost to scheduling another operation immediately after the current operation on the same machine.

In this study, we do not consider the regulation depend setup times.

2.3. Previous Works on the Flowshop Scheduling problem

A number of studies on flowshop scheduling problem have been carried. The studies were carried out by applying various search method such constructive heuristics, search methods (i.e. Tabu Search (TS), and Local Improvement Procedure (LI)/Local

Search (LS), and enumeration. Johann Hurink and Jens Keuchel studies on Local Search Algorithms for a Single-Machine Scheduling Problem with Positive and Negative Time-Lags, point out positive and negative time-lags are general timing restrictions between the starting times of jobs which have been introduced in connection with the Metra Potential Method. Although very powerful, these relations have been rarely considered in the literature since for a single machine problem with positive and negative time-lags the problem of finding a feasible solution is *NP*-complete. In their paper, a local search approach for a single-machine scheduling problem with positive and negative time-lags and the objective to minimize the makespan is presented. Since the existence of a feasible initial solution for starting the search cannot be guaranteed, infeasible solutions are incorporated into the search process. Computational results based on instances resulting from shop problems are reported.

Edward L. Mooney and Ronald L. Rardin point out scheduling problems are often modeled as resource constrained problems in which critical resource assignments to tasks are known and the best assignment of resource time must be made subject to these constraints.

A research by Naveen Garg, Sachin Jain, and Chaitanya Swamy on randomized algorithm for flowshop scheduling state that the shop scheduling problems are known to be notoriously intractable, both in theory and practice. They also added the basic shop scheduling model consists of machines and jobs each of which consists of a set of operations. Each operation has an associated machine on which it has to be processed for a given length of time. The processing times of operations of a job cannot overlap. Each machine can process at most one operation at a given time. The algorithm developed based on the rounding of the solution of a Local Improvement (LI) formulation of the flowshop problem. The LI imposes some additional constraints which makes the rounding scheme possible.

In Netherlands, K.J. Batenburg and W.J. Palenstijn explored a New Exam Timetabling Algorithm. They state that the examination timetabling problem is a difficult combinatorial problem which has to be tackled several times a year by universities all over the world. The multi-stage algorithm introduced and appears to perform very well on various publicly available test datasets. They have analyzed an alternative multi-stage algorithm, based on modern AI (Artificial Intelligent) techniques such as evolutionary computation and tabu search. They also have showed that for large problems using a parallel variant of tabu search leads to significant improvements in the resulting timetable in comparison with the multi-stage algorithm. Although the new approach causes longer runtimes it can be parallelized very efficiently.

Keith Schmidt analyzed the implementation of a robust tabu search algorithm for the job shop scheduling problem and its extension to efficiently handle a broader class of problems, specifically Job Shop instances modeled with sequence dependent setup times. The Keith Schmidt studies focus on solving the job shop scheduling problem with sequence dependent setup times using Tabu Search. The Job Shop Scheduling problem is among the NP problems with the most practical usefulness. This problem is one of the most difficult NP-Hard problems to solve in practice.

The multi-stage parallel machine problem with limited buffer capacities studies conducted by Bagas Wardono and Yahya Fathi focus on the problem of scheduling N jobs on parallel machines in L successive stages with limited buffer capacities between stages. The target of the studies is to find a schedule that would minimize the makespan. A Tabu Search algorithm developed for this problem in which the search is limited to the space of permutation vectors of size N. This vector represented the order in which the given sets of jobs are performed in the first stage, and they proposed a procedure to construct a complete schedule associated with every permutation vector. The key feature of the algorithm is that it limits the search to the space of permutation vectors representing the order in which the given sets of jobs are processed in the first stage. They have developed several such procedures in the context of a tabu search algorithm for the problem with unlimited buffer capacities but these procedures applicable in the presence of limited buffer capacities. So they have constructed an effective constructive procedure for solving the problem.

Another research by Nysret Musliu on rotating workforce scheduling, is a typical constraint satisfaction problem which appears in a broad range of work places. In his studies, he used the combination of tabu search with random walk and minimum conflicts strategy to solve this problem. Computational results for benchmark showed that combination of tabu search with random walk and minimum conflicts strategy improves the performance of tabu search for this problem. The methods used improved performance of the state of art commercial system for generation of rotating workforce schedules.

CHAPTER III SEARCH METHODS

In this chapter, we discuss the search procedures which are going to be implemented in this study. These procedures are namely Tabu Search procedure (TS) and Local Improvement procedure/Local Search (LI/LS), Genetic Algorithm (GA) and Simulated Annealing (SA).

3.1. TABU SEARCH

The Tabu search (TS) has been widely applied for solving combinatorial optimization problems. The basic concept of TS described by Glover (1986) is "a meta-heuristic superimposed on another heuristic". The meta-heuristic TS approach is dramatically changing our ability to solve problems of practical significance. The overall approach is to avoid entrainment in cycles by forbidding or penalizing moves which take the solution, in the next iteration, to point to the solution space previously visited. The TS is fairly new that Glover attributes it's origin to about 1977. The method is still actively researched that still continuing to evolve and improve. The TS method was partly motivated by the observation that human behavior appears to operate with a random element that leads to inconsistent behavior given similar circumstances.

The word *tabu* (or *taboo*) comes from Tongan, a language of Polynesia, where it was used by the aborigines of Tonga Island to indicate things that cannot be touched because they are sacred. According to Webster's Dictionary, the word tabu now also means "a prohibition imposed by social custom as a protective measure" or of something "banned as constituting a risk." These current more approaching senses of the word accord well with the theme of TS.

The roots of tabu search go back to the 1970's; it was first presented in its present form by Glover [Glover, 1986]; the basic ideas have also been sketched by Hansen [Hansen 1986]. Additional efforts of formalization are reported in [Glover, 1989], [de Werra & Hertz, 1989], [Glover, 1990]. Many computational experiments have shown that tabu search has now become an established optimization technique which can compete with almost all known techniques and which - by its flexibility - can beat many classical procedures. Up to now, there is no formal explanation of this good behavior. Recently, theoretical aspects of tabu search have been investigated [Faigle & Kern, 1992], [Glover, 1992], [Fox, 1993].

In TS, the algorithm begins with an initial solution which can be generated either randomly or using the result of a known the constructive procedure. The tabu search then improves the solution through a series of iteration. At each of the iteration, the tabu search then investigates the neighborhood of the current solution. The process repeated until it met the stopping criteria.

The application domain of the Tabu search has been traditionally on combinatorial optimization problems. The technique is straightforwardly applied to continuous functions by choosing a discrete encoding of the problem. The applications of TS are shown in table 3.1.

1)	Scheduling	Classroom Scheduling, Machine Scheduling,	
		Flowshop, Job Shop Scheduling	
2)	Telecommunications	Call Routing, Bandwidth Packing, Optical	
		Networks and Network Design.	
3)	Design	CAD, Transport Network Design	a, Architectural
		Space Planning, Fixed Charge N	etwork Design
4)	Production, Inventory and	Flexible Manufacturing, Just-in-	Fime Production,
	Investment	Capacitated MRP, Part Selection	
5)	Technology	Electrical Power Distribution, Er	gineering
		Structural Design, Minimum Vol	ume Ellipsoids
6)	Others	Logic and Artificial Intelligence,	Graph
		Optimization, Location and Allo	cation, Routing

Table 3.1: Tabu Search (TS) applications.