

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BLUETOOTH CONTROLLED STAIRS CLIMBING ROBOT

This report submitted in accordance with requirement of University Teknikal Malaysia Melaka (UTeM) for the Bachelor of Manufacturing Engineering (Robotic and Automation) with Honours.

By

SYAZWAN AKMAL BIN SUMAIDI

FACULTY OF MANUFACTURING ENGINEERING 2008

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Bluetooth Controlled Stairs Climbing Robot

SESI PENGAJIAN: 2008/09 Semester 2

Saya SYAZWAN AKMAL SUMAIDI

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD

SUL IT

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Alamat Tetap:

2237 Bagan Tambang, Teluk Ayer

Tawar 13050, Butterworth, P. Pinang.

Tarikh: 22 ME1 2009

Disahkan oleh:

Cop Rasmi:

SYAMIMI BINTI SHAMSUDDIN Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

Tarikh: 22 MEI 2009

** Jika Laporan PSM ini SULIT atau TERHAD. sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sek[©] ^{Universiti} Teknikal Malaysia Melakan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Bluetooth Controlled Stairs Climbing Robot" is the result of my own research except as cited in reference.

Signature Author's Name Date

:

:

:

SVAZWAN AKMAL SUMAIDI

22 MEI 2009

.....

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation) with honours. The member of the supervisory committee is as follow:

(Signature of Supervisor)

(Official Stamp of Supervisor)

SYAMIMI BINTI SHAMSUDDIN Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation) with honours. The member of the supervisory committee is as follow:

(Signature of Principal Supervisor)

(Official Stamp of Principal Supervisor)

SYAMIMI BINTI SHAMSUDDIN Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

(Signature of Co-Supervisor)

(Official Stamp of Principal Co-Supervisor)

ABSTRACT

This project is about designing and developing a stairs climbing robot which is manually controlled using Bluetooth wireless technology. This project is actually an improvement of a previous PSM project of stairs climbing robot. The improvement focuses on the design structure, robot capability and technology implementation. For the design structure, the improved stairs climbing robot have a more stable structure compared to previous design. The base of the improved robot is wider and has larger surface contact to the ground, therefore it is more stable. For robot capability, the improved stairs climbing robot uses tracked wheels, this type of wheel increases the traction between wheels and stairs during climbing thus preventing it from slipping. This also increased the capability of the robot to climb stairs compared to the previous one that was only able to climb two steps of stairs. In the technology implementation, the improved stairs climbing robot utilizes Bluetooth technology. That adopted frequency hopping technique minimizes the chance of signal interference compared to the previous robot that uses radio frequency (RF) signal that was highly exposed to interferences during communication. The result from testing shows that this robot is able to climb up stairs better from the previous stairs climbing robot.

ABSTRAK

Projek ini adalah berkenaan dengan mereka dan membangunkan sebuah robot yang boleh menaiki tangga yang dikawal secara manual dengan menggunakan teknologi wayarles Bluetooth. Projek ini adalah suatu penambahbaikan dari projek PSM sebelum ini. Penambahbaikan ini adalah bertumpu pada struktur reka bentuk, keupayaan robot dan penggunanan teknologi pada robot berkenaan. Untuk struktur reka bentuk, robot ini mempunyai struktur yang lebih stabil berbanding dengan reka bentuk robot sebelum ini. Tapak asas robot ini mempunyai keluasan permukaan bersentuh dengan lantai yang lebih besar, oleh itu ia lebih stabil. Dari segi keupayaan, ia menggunakan roda bertrek, roda jenis ini meningkatkan daya geseran antara roda-roda dengan tangga semasa mendaki dan menghalang ia daripada tergelincir. Ini juga dapat menembahkan keupayaanya untuk memanjat tangga dengan lebih baik berbanding dengan robot sebelum ini yang hanya dapat menaiki dua anak tangga sahaja. Dalam penggunaan teknologi pula, robot ini menggunakan teknologi Bluetooth. Teknologi ini menggunakan teknik frekuensi loncatan bagi mengurangkan gangguan isyarat berbanding dengan robot sebelum ini yang menggunakan isyarat frekuensi radio (RF) yang sangat terdedah kepada gangguan semasa berkomunikasi. Hasil daripada ujian yang telah dijalankan ke atas robot ini, ia mampu untuk menaiki tangga dengan lebih baik berbanding robot sebelum ini.

DEDICATION

To my parents, Sumaidi Sukarso and Rohaidah Hassan; Supervisor, Pn. Syamimi Bt Shamsuddin; Co-supervisor, En. Muhamad Arfauz bin Abdul Rahman; Girlfriend, Nor Hayati Nadzli; Housemate, Addam, Adam, Abie, Ajis and Apis; Whose love of reading has been an inspiration.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and Most Merciful. I would like to express my most sincere and deepest gratitude to my PSM supervisor, Pn. Syamimi Bt Shamsuddin, for her untiringly encouraging discussion, valuable comment and advice throughout this PSM period. Her continuous support and concern during critical and difficult times have been such an inspiring moment that motivated me in many ways especially in focusing and directing toward the accomplishment of this PSM report. May Allah (S.W.T) bless her with many and best rewards. Special thanks also go to my PSM co-supervisor, En. Muhamad Arfauz bin Abdul Rahman, who have endowed his sensible and constructive advice and wisdom throughout this PSM period. My warmest thanks also go to all my collogues, for giving such a great help to me and also being my companion during those hard times. Finally I would like to acknowledge an unconditional love, encouragement and moral support that I have received from my loving partner, Nor Hayati Nadzli, the source of my inspiration, my families for their love and understanding that have become the driving force of aspiration that lead me to this achievement. May Allah (S.W.T) bless them with His greatest rewards.

TABLE OF CONTENT

Abstract		i
Abstrak		ii
Dedica	ation	iii
Ackno	wledgment	iv
Table	of Content	v
List of	Table	ix
List of	Figure	Х
List A	bbreviations	xiv
1. IN	TRODUCTION	1
1.1	Project Background	1
1.2	Problems Statement	2
1.3	Project Aim and Objectives	2
1.4	Project Scopes	3
1.5	Project Benefits	3
1.6	Project Planning	4
2. LI	TERATURE REVIEW	7
2.1	Introduction to Robot	7
2.2	Type of Robot	8
2.2.1	Industrial Robot	8
2.2.1.1 Cartesian Robot		9
2.2.1.2	2 Cylindrical	9
2.2.1.3 Polar		10
2.2.1.4 Jointed-Arm		11
2.2.2	Mobile Robot	11
2.2.2.1 Wheeled		12
2.2.2.2 Tracked		13
2.2.2.3 Legged and hopping		14
2.2.2.4 Hybrid 17		17
2.2.2.5 Flying		18

2.3	Mobile Robot Components	19
2.3.1	Body (Material)	20
2.3.1.	l Metal	20
2.3.1.2	2 Plastic	22
2.3.1.	3 Composite	23
2.3.1.4	4 Wood	24
2.3.2	Motor	25
2.3.2.	1 AC Motor	25
2.3.2.2	2 DC Motor	26
2.3.2.	3 DC Stepper Motor	30
2.3.3	Power Source	32
2.3.3.	1 Nickel Cadmium	33
2.3.3.	2 Nickel Metal Hydride	36
2.3.3.	3 Lithium-Ion	38
2.3.3.4	4 Lead-Acid	39
2.3.4	Communication	41
2.3.4.	1 Radio Frequency	41
2.3.4.2	2 Bluetooth Technology	43
2.3.4.	3 ZigBee	48
2.3.5	Brain	53
2.3.5.	l Programmable logic controller	54
2.3.5.2	2 Microcontroller	57
2.3.5.	3 PC Based Controller	59
2.4	Designing Tools	61
2.4.1	Autodesk Inventor	61
2.4.2	CATIA	63
2.4.3	SolidWorks	64
2.5	Previous Studies on Climbing Robot	65
2.5.1	A Study on a Wheel-Based Stair-Climbing Robot With	
	a Hopping Mechanism	66
2.5.2	Innovative Design for Wheeled Locomotion in Rough	
	Terrain	67
2.5.3	Stable Stairs Climbing in a Simple Hexapod Robot	69
2.6	Summary	72

3. METHODOLOGY 73		
3.1	Introduction	73
3.2	Flow Chart	73
3.2.1	Identify Problem Statement	75
3.2.2	Research on Stairs Climbing Robot	75
3.2.3	Conceptual Design	75
3.2.4	Design Selection	76
3.2.5	Component Consideration	76
3.2.6	Fabrication	77
3.2.7	Controller Programming	77
3.2.8	Integration	78
3.2.9	Testing	79
3.2.10	Modify	79
3.2.11	Report Presentation	79
3.3	Research and Study Tool	79
3.3.1	SolidWorks Software	80
3.3.2	MPLAB Software	84
3.3.3	BlueSoleil Software	88
3.3.4	Hyper Terminal Software	91
3.3.5	Pugh Method for Decision Making	94
3.4	Summary	95
4. DI	ESIGN AND DEVELOPMENT	96
4.1	Designing	97
4.1.1	First Design: Crawler Robot	98
4.1.2	Second Design: Rover Robot	98
4.1.3	Third Design: Crawler-Rover Robot (Hybrid)	101
4.2	Design Selection	103
4.3	Electronic Circuit Diagram	104
4.3.1	Microcontroller Circuit	105
4.3.2	Power supply Circuit	106
4.3.3	Bluetooth Module Circuit	107
4.3.4	Motor Driver Circuit	110

4.4	Programming	111
4.5	Mechanical Structure	116
4.5.1	Base	116
4.5.2	Wheels	119
4.5.3	Shafts	121
4.5.4	Synchronize Belt	124
4.6	Parts Assembly	124
4.7	Mechanical Structure Analysis	126
4.7.1	Center of Gravity	127
4.7.2	Force of Climbing	128
4.8	Summary	130
5. TI	ESTING, RESULT AND DISCUSSION	131
5.1	Electronic Circuit Testing	131
5.1.1	Result and Discussion of Electronic Testing	133
5.2	Mechanical Testing	136
5.2.1	Result and Discussion of Mechanical Testing	138
5.3	Summary	141
6 6		
	DNCLUSION AND SUGGESTIONS FOR FUTURE WORKS	142
6.1	Conclusion	142
6.2	Suggestions for Future Work	143
REFERENCE		146
APPENDICES 1		152

LIST OF TABLES

1.1	PSM Gantt chart for semester one	5
1.2	PSM Gantt chart for semester two	6
2.1	Bluetooth specs and classes	45
2.2	Comparison between Bluetooth and radio frequency	48
2.3	Comparison between ZigBee and Bluetooth	53
4.1	Pugh method	103
4.2	Bluetooth module pin assignment	108
4.3	Pin Function Description	111

.

LIST OF FIGURES

2.1	Cartesian or X-Y-Z arm robot manipulator	9
2.2	Cylindrical-arm robot manipulator	9
2.3	Polar robot manipulator	10
2.4	Jointed-arm manipulator	11
2.5	Nomad traversing very uneven terrain	12
2.6	The tracked Hobot	13
2.7	Honda biped P3	14
2.8	Robinspec magnetic climbing robot	15
2.9	Sony AIBO Robot Dog	15
2.10	Walking Forest Machine	16
2.11	Robug 4	17
2.12	Wheeleg	18
2.13	Unmanned aerial vehicle	19
2.14	Variety shapes of metal (aluminum)	21
2.15	PVC pipes	23
2.16	Carbon fiber	24
2.17	Wood	25
2.18	DC Motors with Brushes	27
2.19	Brushless DC Motors	29
2.20	DC Stepper Motors	31
2.21	Nickel Cadmium	34
2.22	Nickel Metal Hydride	36
2.23	Lithium-Ion	38
2.24	Lead-Acid	40
2.25	Bluetooth piconet /scatternet topology	47
2.26	ZigBee Network	49
2.27	Mesh Networking Path one	50
2.28	Mesh Networking Path two	51
2.29	The application of ZigBee	52
2.30	Programmable logic controller	54
2.31	Components of a PLC	57

2.32	Microcontroller	58
2.33	PC-Based Controller	60
2.34	Wheel-based robot with hopping mechanism	67
2.35	Sequences showing the rover climbing a step	68
2.36	Hexapod robot (RHex)	69
2.37	Phases of one complete stair climbing cycle	70
2.38	Phases of one complete stair descending cycle	71
3.1	Process flow of PSM 1 and PSM 2	74
3.2	The flowchart of controller programming	78
3.3	SolidWorks icon	80
3.4	SolidWorks program	80
3.5	Create new document	81
3.6	New SolidWorks document window	81
3.7	Planes in SolidWorks	82
3.8	Drawing icon	82
3.9	Sketch mode	83
3.10	MPLAB icon	83
3.11	Create a new document	83
3.12	Choosing the correct type of microcontroller	84
3.13	Selecting the Active toolsuite	85
3.14	The project name and location window	85
3.15	Proceed to next window	86
3.16	The creation of a new workspace is complete	86
3.17	Add the source file	87
3.18	Add Bluetooth.c to the project	87
3.19	Build the created project	88
3.20	BlueSoleil icon	88
3.21	BlueSoleil window	89
3.22	Bluetooth module is detected	89
3.23	Method of Bluetooth connection	90
3.24	Bluetooth serial port service	90
3.25	Bluetooth connections is on COM4	91
3.26	HyperTerminal icon	91

3.27	Making new connection	92
3.28	Serial port connection	92
3.29	Baud rate selection	93
3.30	HyperTerminal interface window	93
4.1	Isometric view of first design: Crawler robot	97
4.2	Isometric view of second design: Rover robot	
	(before transformation)	99
4.3	Isometric view of the second design: Rover robot	
	(after transformation)	99
4.4	Robot A with ramp	100
4.5	Robot B without ramp	100
4.6	Isometric view of the third design:	
	Crawler-rover robot (hybrid)	101
4.7	Bluetooth enable microcontroller circuit diagram	105
4.8	Microcontroller circuit	106
4.9	Power supply	107
4.10	Bluetooth module	108
4.11	Bluetooth module pin connections	109
4.12	Motor driver connection	110
4.13	Program part A	112
4.14	Program part B	113
4.15	Program part C ₁	114
4.16	Program part C ₂	115
4.17	Program part C ₃	115
4.18	Program part D	116
4.19	The drilled mild steel hollow square rod	117
4.20(a	a) The upper rectangle frame	117
4.20(1	b)The lower rectangle frame	117
4.21	The frame structure of this robot	118
4.22	Exploded view of frame structure	119
4.23	Laser cutting machine	120
4.24	Exploded view of the wheel design	120
4.25	Assembled wheel	121

4.26	Shafts	121
4.27	Combination of part A and Part B	122
4.28	Exploded view of shaft	122
4.29	Shaft mounted to wheel	123
4.30	Shaft mounted to wheel and motor	123
4.31	Synchronize belt	124
4.32	A complete assembled robot	125
4.33	Exploded view of the complete assembled robot	126
4.34	Robot parameters	127
4.35	Force during climbing	129
5.1	Testing circuit	131
5.2	Input signals keyed by using a keyboard	131
5.3	Keying input forward (key 8)	132
5.4	Forward signal	132
5.5	Keying in input backward (key 2)	133
5.6	Backward signal	133
5.7	Keying in input stop (key 5)	134
5.8	Stop signal	134
5.9	Artificial stairs	135
5.10	Simulation of stairs climbing	136
5.11	First phase	137
5.12	Second phase	137
5.13	Third phase	138
5.14	Fourth phase	138
5.15	Fifth phase	139
5.16	Sixth phase	139
6.1	Play station joy stick	142
6.2	Proximity sensor	143
6.3	Legged locomotion	143
6.4	Stairs climbing robot that can carry load	144

LIST OF ABBREVIATION

AC	Alternating current
ADC	Analog-to-Digital converter
Al AM	Aluminum Amplitude modulation
CAD	Computer aided design
CAE	Computer aided engineering
CAM	Computer aided manufacturing
CATIA	Computer Aided Three Dimensional Interactive
	Application
Cd	Cadmium
CPU	Central processing unit
C++	A language used in programming
DC	Direct current
DWG	A file format used for 2 and 3 dimensional design data
ECO	Engineering change orders
EDR	Enhanced Data Rate
FFD	Full Function Devices
FM	Frequency modulation
HAZ	Heat-affecting zone
HCI	Host Controller Interface
GHz	Giga hertz
GPS	Global positioning system
Hz	Hertz
IBM	A company major that manufacturer of computer hardware
ISM	Industrial Scientific and Medical
I/O	Input/output
КОН	Potassium hydroxide
Mbps	Mega bits per second
Ni-Cad	Nickel cadmium
Ni-MH	Nickel metal hydride
Ni (OH) ²	Nickel hydroxide
PAN	Personal-Area Networks

PDA	Personal digital assistant
PLC	Programmable logic controller
PLM	Product lifecycle management
PC	Personal computer
PVC	Polyvinyl chloride
QoS	Quality of Service
RF	Radio frequency
RFD	Reduced Function Device
SIG	Special Interest Group
UART	Universal Asynchronous Receiver/Transmitter
2D	Two dimensional
3D	Three dimensional

CHAPTER 1 INTRODUCTION

This chapter is a brief of what actually this whole project is all about and this allows a glimpse of the entire report and provides understanding of the author's work. This introduction section contains project background, problem statement, project aim and objectives, project scope, project benefits and project planning (using the Gantt chart).

1.1 Project Background

Climbing robot has been a field of increasing activity in the previous years. This can be seen through the research and development of many types of mobile robots such as climbing and walking robot. The example of the previous research and development done by professors, engineers and even scholars are:

- a) Hybrid locomotion of a wheel-legged machine by Halme, A. *et al* that introduce the combination of leg and wheel locomotion to gain effective natural terrain mobility.
- A Biomimetic Climbing Robot Based on the Gecko by Menon and Sitti (2002) propose a study on climbing locomotion that involved adhesive adopted from gecko lizard.
- c) A motorless micro walking robot by Doroftei (2000) which develop a six legged robot that require no motor for its movement instead using small memory alloy wire (muscle wire) by heating to archive movement.

In this project, the designed climbing robot is for climbing a structured terrain which is a flight of stairs that has six inches of height for each step. It is a manual stairs climbing robot which is control wirelessly by using a Bluetooth module.

1.2 Problem Statement

This stairs climbing robot is actually an improvement version from the previous project of stairs climbing robot in term of design structure, capability and technology. For the design structure, this robot will tackle the critical flaws of previous robot which is the stability. The previous robot is quite small compared to the stairs itself and its shape is not suitable for the steps of stairs therefore maintaining stability would be a major problem for it.

In term of capability, this improved robot should be more reliable compared to previous one. It must be able to climb up more then two steps of stairs and this capability depends on the design structure of the robot. This improved robot utilizes Bluetooth technology in controlling its movement. The Bluetooth technology is low-cost, requires low power, and utilizes a radio-based link which does not require a line-of-sight connection in order to communicate.

1.3 Project Aim and Objectives

The aim of this project is to design and develop a stairs climbing robot. This robot is an improvement compare to the previous project done by a senior student. In order to achieve it, the aim and objectives are:

- a) To design, develop and improve the mechanical structure of previous stairs climbing robot.
- b) To program the Bluetooth stairs climbing robot microcontroller
- c) To pair the Bluetooth enable microcontroller with the Bluetooth adapter from the computer so that it can be able to sent and receive signal.

1.4 Project Scopes

In this project of stairs climbing robot there are three main scopes that need to be focused on and there are:

- a) To used Bluetooth as a medium of transferring and receiving signal for stairs climbing robot in manual mode.
- b) To design and develop a stable structure of a climbing robot
- c) To produce a working robot that can climb stairs.

1.5 Project Benefits

In future, the application of stairs climbing robot can be used as devices that ease human daily life in many ways for example as a medium of transportation to carry heavy load fast and efficiently through stairs which would be a hectic job of an ordinary human. Beside that, this application would give its biggest contribution to the disable people/paralyze, by incorporated this technology into a wheel chair which enable them to climb stairs like any other ordinary person. If there are continuously increasing performance to this robot for higher speed and better motion, soon it can just climb stairs but also go through any terrain that it encounters and this is perfect for military used in combat vehicle.

The method of connecting and controlling this robot is via Bluetooth that give cable-free connections, which means real freedom to working environment regardless of location and wire availability. This technology allows robot and other handy gadgets to make use of "short range, low power" radio technology to connect to each other. With the growth demand toward Bluetooth devices, it will replace the inconsistency of radio frequency (RF). With Bluetooth it is possible to be in another room and still be able to access another device with no use of wires. Bluetooth radio uses a fast acknowledgement and frequency-hopping scheme to make the link robust, even in noisy radio environments.

1.6 Project Planning

This project of stairs climbing robot will be carried out according to these time planning. Table 1 shows the activity planning for semester one while table 2 shows the activity planning for semester two.