DESIGN OF JIG USED TO HOLD BALL VALVES FOR SURFACE POLISHING

MOHD KHARUL IZZAT ALWI

UNIVERSITY TEKNICAL MALAYSIA MELAKA

"I hereby verify that I have read this project report and in my opinion, this report is acceptable within the scopes and quality for graduation."

Signature :

Supervisor Name : EN. NAZIM BIN ABD. RAHMAN

Date : 27th MARCH 2008

Signature :....

Supervisor Name : EN. FIRDAUS

Date : 27th MARCH 2008

"I hereby certify that this project report is on my own work except for any diagrams, figures and reports that I have used and taken from other sources have been verified on each of them."

Signature:Student Name:MOHD KHAIRUL IZZAT ALWIDate: 26th MARCH 2008

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

Firstly .a great thankful to Allah s.w.t for giving me an opportunity to finish my PSM 1 as scheduled. I also would like to dedicate a thankful to university Technical Malaysia Melaka (UTeM) specifically to faculty of Mechanical Engineering for giving me a thrust and opportunity to conduct my PSM research through this year

I would like to sincerely convey my greatest appreciation to En. Mohd Nazim bin Abdul Rahman as my degree project supervisor for all the coaching and guidance through this year. A lot thankful also dedicates to all FKM lectures especially lectures from Department of Structural and Material for their understanding and assist through this project.

My heartiest appreciation to my personal support organization ,my family especially my beloved parents, brother and sister .I would like to dedicate my thanks to all response person during an interview and thanks all to my friends and person who help me a lot during the difficult time.

ABSTRACT

Tanjung Maintenance Sdn Bhd is one of the native companies that produced maintenance service for heavy industry equipment. Among maintenance services in Tanjung Maintenance Sdn Bhd are ball valve polishing, valve seat lapping process, hydro test and many more. Tanjung maintenance firm they were still using traditional method for polishing process. The old method is risky to the workers and it limited to certain ball, which are not suitable for large and too small ball. The old method using expelled steel to grip the ball and the lathe machines as the medium rotation of the ball. Since from the problem, a recommendation had been made to design s special jig that flexible to grip a different sizes of ball and construct the technique more users friendly to the human resources especially workers. A detail revision and analysis on traditional technique has been done. It is important to develop an assistive jig, which is that have fully criterion to work out the problem. Hopefully the concepts that have been generated can diminish an accident to the workers and can reduce the cost of polishing process.

ABSTRAK

Tanjung Maintenance Sdn Bhd merupakan salah satu syarikat bumiputera yang memberikan perkhidmatan penyelenggaraan alatan industri berat. Antara perkhidmatan selenggraan yang ada di Tanjung Maintenance ialah proses mengilap bola injap, mengilap injap duduk ,ujian kebocoran dan pelbagai perkhidmatan penyelenggaraan . Kaedah menggilap bola injap yang dilakukan di Tanjung Maintenance masih menggunakan kaedah yang lama. Ia menggunakan batang besi terbuang untuk memegang bola dan menggunakan mesin pelarik sebagai medium untuk memegang dan memutarkan bola. Kaedah ini adalah berisiko tinggi kepada pekerja dan ia terhad untuk saiz-saiz bola yang tertentu sahaja. Dalam menyelesaikan masalah ini ,satu cadangan telah diusulkan untuk mereka satu alat yang yang lebih selamat semasa melakukan proses mengilap bola ini .Alat yang direka bentuk akan menekankan aspek dari segi keanjalan alat ini untuk memegang pelbagai saiz injap dan dari aspek keselamatan. Kajian terperinci dan analisis akan dijalankan dalam usaha membangunkan alat ini demi memastikan konsep yang dipilih adalah tepat. Ini penting dalam memastikan alat yang direka mempunyai ciri-ciri yang dapat mengurangkan risiko kemalangan semasa dan secara tidak langsung dapat mengurangkan kos proses mengilap injap bola.

TABLE OF CONTENT

CHAPTER	ITEN	1	PAGE	
	CON	FESSION	i	
	ACK	NOWLEDGEMENT	ii	
	ABS	TRACT	iii	
	ABS	ΓRAK	iv	
	TAB	LE OF CONTENT	v	
	LIST	OF TABLE	ix	
	LIST	OF FIGURE	Х	
	LIST	OF SYMBOLS	xiv	
	LIST	OF ABBREVIATIONS	XV	
	LIST	OF APPENDIXES	xvi	
Ι	INTF	RODUCTION	1	
	1.1	Problem Statement	3	
	1.2	Objective of Study	4	
	1.3	Scopes	4	
TT			F	
II		RATURE REVIEW	5	
	2.1	Valves Definition	5	
	2.2	Valve parts	6	
		2.2.1 Ports	7	
		2.2.2 Discs and rotor	7	
		2.2.3 Seat	8	

2.3	Types of the ball valves	8
	2.3.1 RA series	8
	2.3.2 Characteristic of RA series	9
	2.3.3 Series R	9
	2.3.4 The characteristic of R	10
2.4	Traditional Polishing method	11
2.5	Computer-aided design (CAD)	13
	2.5.1 Solid work	13
	2.5.2 Solid work Cosmo	14
2.6	Stress	15
	2.6.1 Bending	16
2.7	Yield stress	17
2.8	Tapered roller bearing	19
III METI	HODOLOGY	22
3.1	Design Flow Process	22
3.2	Formulating Process	23
3.3	Concept Design	25
3.3.1	Clarify Function	26
3.3.2	Generate Alternative concepts	27
3.3.3	Analyzing alternative concepts	27
3.3.4	Evaluating alternatives concepts	28
3.3.5	Best Concept	28
IV CONC	CEPTS DESIGN	29
4.1	Design specifications and requirements	30
	4.1.1 Problem faced during polishing	
	Process	31

	4.4.3	Concepts Evaluate		38
DESIC	GN		2	40
5.1	Desigr	n configuration		41
	5.1.1	Rotation and Sliding Mechanism		41
	5.1.2	Joining mechanism		44
5.2	Materi	ial selections		49
5.3	Desigr	n Specifications		50

	5.1.1	Rotation and Sliding Mechanism	41
	5.1.2	Joining mechanism	44
5.2	Materi	al selections	49
5.3	Design	n Specifications	50
	5.3.1	Product Specification	50
	5.3.2	Product Features	51
DETA	IL DES	SIGN	52

V

VI

6.1

6.2

6.3

6.4

6.5

Part Detail

Assembly drawing

Bill of material

Disassembly Drawing

Detail Design Process Flow

4.2	Conce	pts generations	31
	4.2.1	First Concept	32
	4.2.2	Second Concept	34
	4.2.3	Third Concept	35
4.3	Conce	pt sketch	34
4.4	Conce	pts selections	37
	4.4.1	Weighed rating method	37
	4.4.2	Final concepts selections	38
	4.4.3	Concepts Evaluate	38

PAGE

53

61

62

64

65

STRUCTURAL ANALYSIS				
7.1	Struct	ural analysis by using theoretical	67	
	7.1.1	Calculations analysis (Horizontal)	68	
	7.1.2	Theoretical analysis of jig in		
		Vertical position	70	
	7.1.3	Calculations analysis (Vertical)	71	
7.2	Bearir	ng selection using cosmos	72	
7.3	Struct	ural Analysis	73	
	7.3.1	Procedure in structural analysis	73	
7.4	Struct	ural analysis	78	
	7.4.1	Structures analysis for the		
		Horizontal boom length 395×10^{-3}	78	
	7.4.2	Structures analysis of the		
		Horizontal boom	81	
7.5	Result	t Analysis	85	
	7.5.1	Analysis of boom in horizontal		
		Position	85	
	7.5.2	Analysis of boom in vertical position	86	
7.6	Desig	n for safety and environments	87	
CON				
			88	
8.2	Sugge	stion for further study	89	
REFE	RENCE	ES	90	
	 7.1 7.2 7.3 7.4 7.5 7.6 CONO FUTH 8.1 8.2 	7.1 Struct $7.1.1$ $7.1.1$ $7.1.2$ $7.1.3$ 7.2 Bearin 7.3 Struct 7.3 Struct 7.3 Struct $7.3.1$ $7.4.1$ $7.4.2$ $7.4.2$ 7.5 Result $7.5.1$ $7.5.2$ 7.6 Design CONCLUSIC FUTHER ST 8.1 Concl 8.2 Sugge	 7.1 Structural analysis by using theoretical 7.1.1 Calculations analysis (Horizontal) 7.1.2 Theoretical analysis of jig in Vertical position 7.1.3 Calculations analysis (Vertical) 7.2 Bearing selection using cosmos 7.3 Structural Analysis 7.3.1 Procedure in structural analysis 7.4 Structural analysis for the Horizontal boom length 395 × 10⁻³ 7.4.2 Structures analysis of the Horizontal boom 7.5 Result Analysis 7.5.1 Analysis of boom in horizontal position 7.6 Design for safety and environments CONCLUSION AND SUGGESTION FOR FUTHER STUDY 8.1 Conclusion 	

LIST OF TABLES

TABLE NUM.	TITLE	PAGE
Table 2.3	Table of dimension sizes and	
	weight ball series	10
Table 4.1	Product Descriptions, key business	
	Goal and Target Markets	30
Table 4.2	Weighted Rating Method	37
Table 4.3	Rating value	37
Table 5.1	Material of each component	49
Table 5.2	Product specifications	50
Table 6.1	Standard part in the product design	60
Table 6.2	The numbers of components in jig	64
Table 7.1	Result of analysis	85

LIST OF FIGURES

FIGURE NUM.	TITLE	PAGE
Figure 2.1	Exploded view of RA series ball	
	valves	8
Figure 2.2	Exploded view of R series	9
Figure 2.3	The Traditional polishing process	11
Figure 2.4	Polishing process with small ball	
	valves	11
Figure2.5	The polishing in vertical position	12
Figure 2.6	Product design by using solid work	
	software	13
Figure 2.7	Tapered roller bearing	19
Figure 2.8	Point of roll	19
Figure 2.9 Figures 3.1	Cutaway view of a tapered roller bearing Block diagram of design process	20
6	(Rundolpth J Egger , 2004)	22
Figure 3.2	Formulating Design Problem	24
Figure 3.3	Concept design decision making	
	activities	25
Figure 3.4	Hierarchy structure functions	26
Figure 4.1	First concept sketches	34
Figure 4.2	Second concept sketches	35
Figure 4.3	Third concept of sketch	36

Figure 5.1	Rotating cap movement	41
Figure 5.2	Movement of second body	42
Figure 5.3	The boom that can move forward	
	and backward	43
Figure 5.4	Joining using slot joint	44
Figure 5.5	Weld joints	45
Figure 5.6	Screw joint between horizontal	
	block and main body	45
Figure 5.7	Screw joint (bom and connecting shaft)	46
Figure 5.8	Show joining between horizontal block	
	and second body	47
Figure 5.9	The screw joint of main body	47
Figure 5.10	Slotted screw joint	
	(rotating rod and boom)	48
Figure 6.1	Main body	53
Figure 6.2	Second body	54
Figure 6.3	Vertical boom	55
Figure 6.4	Horizontal boom	55
Figure 6.5	Horizontal block	56
Figure 6.6	Vertical block	56
Figure 6.7	Connection shafts vertical/ horizontal	57
Figure 6.8	Rotating cap	58
Figure 6.9	Set screw	59
Figure 6.10	Bolt	59
Figure 6.11	Bearing	59
Figure 6.12	Nut	59
Figure 6.13	Washer	59

PAGE

FIGURE NUM.	TITLE	PAGE
Figure 6.14	Assembly drawing of the jig	
	with horizontal boom	61
Figure 6.15	Assembly drawing of the jig	
	with vertical boom	61
Figure 6.16	Dissemble drawing jig of the boom	
	with horizontal position	62
Figure 6.17	Dissemble drawing jig of the boom	
	with vertical position.	63
Figure 6.18	Detail Design Process Flow	65
Figure 7.1	Figure of reaction force	67
Figure 7.2	The reaction force in jig with	
	horizontal boom	70
Figure 7.3	Calculation of the life hours using	
	Cosmos	72
Figure 7.4	Bearing calculator	72
Figure 7.5	Product in cosmos analysis file	73
Figure 7.6	The table of material resources	74
Figure 7.7	The selection of boundary condition	75
Figure 7.8	The meshing is completely applied to	
	the jig	76
Figure 7.9	Result of the analysis	77
Figure 7.10	The value of stress	78
Figure 7.11	The strain analysis L=395 \times 10 $^{\text{-3}}$ m	79
Figure 7.12	The displacement analysis	
	$L = 395 \times 10^{-3} m$	80
Figure 7.13	The maximum value of the stress	81
Figure 7.14	The first critical point of the jig which	
	is at the bottom of the boom.	82

xii

FIGURE NUM.	TITLE	PAGE
Figure 7.15	The 2nd critical point of the jig	82
Figure 7.16	Show the value of strain	83
Figure 7.17	Show the critical location of strain	84

xiii

LIST OF SYMBOLS

SYMBOL DESCRIPTION

σ	The average stress,
F	Force acting over the area A .
М	The moment at the neutral axis
Y	The perpendicular distance to the neutral axis
I_x	The area moment of inertia about the neutral axis x
В	The width of the section being analyzed
Н	The depth of the section being analyzed

xiv

LIST OF ABREVIATION

SUBSCRIPT DEFINITION

CAD	Computer Aided Design
OSHA	Occupational Safety and Health Act(s)
AT	Assistive Technology
ASTM	American Steel Test Material

C Universiti Teknikal Malaysia Melaka

LIST OF APPENDIXES

APPENDIX	TITLE	PAGE
А	Project Gantt Chart PSM I	93
В	Project Gantt Chart PSM II	94
С	Detail Drawing	95

C Universiti Teknikal Malaysia Melaka

CHAPTER I

INTRODUCTIONS

Oil and gas are considered among the world's most important resources. The oil and gas industry plays a critical role in driving the global economy. The processes and systems involved in producing and distributing oil and gas are highly complex, and require state-of-the-art technology.

ISO 9001:2000 certified worldwide manufacturer of severe service valves. A wide range of custom-engineered valves for high & medium pressure applications are available. Valves are designed to handle high pressure, corrosive, high temperature & erosive applications .Types of valves include pressurize safety & relief, turbine bypass, chemical, isolation, high temperature, choke, control, high pressure, safety, oil & steam valves. Applications includes oil & gas, fossil, nuclear, wellhead pressure control, firewater pump discharge, methanol injection, high-pressure letdown, boiler feed water regulators, and oil compressor for LNG fuel.

A large variety of valves is available and has many applications with sizes ranging from tiny to huge. The cost of valves ranges from very cheap simple disposable valves, and the value are very expensive especially for specialized applications. Often not realized by some, small valves are even inside some common household items including mini-pump dispenser spigots, spray devices, and some rubber bulbs for pumping air. A valve is a device that regulates the flow of substances (gases, fluidized solids, slurries, or liquids) by opening, closing, or partially obstructing various passageways.

Valves are used in of applications including industrial, military, commercial, residential, transportation. Plumbing valves are the most obvious in everyday life.The typical problem of the ball valve is leakage. The leakage occurred because of those scratches on the ball surfaces and the scratches due to the pressure of flow or installations process. When the problems occur, the ball valves should go polishing process.

Tanjung maintenance services are one of the companies that carry out work on oil and gas industry services. At Tanjung Maintenance they have 4 sections of department which is mechanical department, fabrication department, diesel department and valves departments. Valve department is carry out work on valve maintenances witch are includes polishing process of ball valves, lapping process ,hydro test and many oil and gas industry maintenance process.

2

1.1 Problem Statement

Leakage can be described as an unwanted loss, or leak, of something which escapes from its proper location. The leaking can be gas, liquid, or even a solid such as a powdered or granular solid. The regular problem happens to the ball valves are the leakage inside of the ball. The leakage gave an impact to the performances of system and also gives damage to the valves and increasing maintenance cost of month.

At Tanjung Maintenance, the polishing process was conducted in a traditional way. The polishing process is done by using a special shaft to hold the ball at the lathe machines. The ball then will be tightening at chuck of the lathe machines. Once the ball has been rotated the workers will polish the ball valve by using the sand paper, which is hold by their naked hand. These procedures will continuously execute until all the scratches on the ball surface are fully disappeared.

1.2 Objective of Study

The objective of this project is to design a jig that used to hold a valve that will undergo polishing process. The jig has ability to hold the ball with different size and weight. The characteristics of the jig should have higher level of safety

1.3 Scopes

- Do some literature review and study on the valve application and their functions
- Design a jig that will attach to the turning machine
- Do some structural analysis on the design
- Come out with the design of the jig that uses to hold the ball of the valve when polishing process.
- Conduct with the design structural analysis to the jig by using COSMOS.

CHAPTER II

LITERATURE REVIEW

In order to have better understanding of this project, literature reviews have been made on several topics. The purpose of this chapter is to provide the brief of the literature review on design for safety. The first part of this chapter will be discussed on what are the valves and its definition. More over the literature study contents the characteristic of the successful products development. Structural design analysis using Cosmos .Literature study was done by using three main sources as an input to the project research which is internet, books and journal

2.1 Valves Definition

A valve is a device that regulates the flow of substances (gases, fluidized solids, slurries, or liquids) by opening, closing, or partially obstructing various passageways. Valves are technically pipe fittings, but usually are discussed separately. Valves are used in a variety of applications including industrial, military, commercial, residential, transportation. Plumbing valves are the most obvious in everyday life, but many more are used. Some valves are driven by pressure only which are mainly used for safety purposes in steam engines and domestic heating or cooking appliances. Others are used in a controlled way, like in Otto cycle engines driven by a camshaft, where they play a major role in engine cycle control.

2.2 Valve parts

The majority of the valve consists of the valve body, including most of the exterior. The valve body is the vessel or casing that holds the fluid going through inside the valve. Valve bodies are most commonly made of various metals or plastics, although valve bodies fused with glass laboratory items in one piece are also made of glass.

2.2.1 Ports

The body consists of two or more openings, called ports from which movement occurs from one opening to the next. These ports are controlled by a valve. Valves with two or three ports are the most common, while valves consisting of four or more ports are not as frequently used. Extra ports that are not needed can be closed off by the valve. Manufacturing of valves often occurs with the intent that they will be connected with another specific object. These objects can vary, but generally these include some type of piping, tubing, or pump head.

Combined with a valve, ports have the ability to act as faucets, taps, or spigots, all while one or more of its remaining ports are left unconnected. Most valves are built with some means of connection at the ports. This includes threads, compression fittings, glue or cement application (especially for plastic), flanges, or welding (for metals).