SLOT ULTRA WIDEBAND (UWB) ANTENNA

MUSFIRAH BT HILMI

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > April 2009

C Universiti Teknikal Malaysia Melaka

HALAYSIA MALAYSIA		IVERSTI TEKNIKAL MALAYSIA MELAKA Ruteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II		
Tajuk Projek	: SLOT UI	LTRA WIDEBAND (UWB) ANTENNA		
Sesi Pengajian	: 2008/2009)		
 mengaku membena syarat kegunaan sep 1. Laporan adalah 2. Perpustakaan d 3. Perpustakaan d 	 mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut: 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka. 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi. 			
SUL	.IT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)		
TER	RHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)		
	AK TERHAD			
		Disahkan oleh:		
(TAND/ Alamat Tetap: 49 JALAN USJ 4/60 47600 SUBANG JA		S) (COP DAN TANDATANGAN PENYELIA)		
Tarikh:		Tarikh:		

C Universiti Teknikal Malaysia Melaka

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature	·
Author	: MUSFIRAH BINTI HILMI
Date	·

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours."

Signature	:
Supervisor's Name	:MOHAMAD ZOINOL ABIDIN ABD AZIZ
Date	:

For my beloved mom and dad.

ACKNOWLEDGEMENT

First of all, praise to Allah for the goods and bless me along to complete this Final Year Project. I would like to thank all my lecturers involved especially my supervisor for their guidance as the approval notification for me to undergo my Final Year Project in Universiti Teknikal Malaysia Melaka (UTeM). Next, I would like to express my deepest gratitude to my colleagues for their continuous help, support, and guidance throughout this course in order to complete my project. I would also like to take this opportunity to thank again my supervisor Mr. Mohamad Zoinol Bin Abd Aziz whom had actually provided me with all the valuable, precious information to complete this report. Finally yet importantly, I would like to thank all for providing me a full cooperation whether direct or indirectly to me while undergoing this Final Year Project.

ABSTRACT

Since the release by the Federal Communications Commission (FCC) of a bandwidth of 7.5 GHz (from 3.1 GHz to 10.6 GHz) for ultra wideband (UWB) wireless communications, UWB is rapidly advancing as a high data rate wireless communication technology. Due to the requirements of large capacity of data and high speed data transmission rate, UWB technology has become the promising communication system. There are many types of UWB antenna such as dipole, bow-tie, TEM horn, slot UWB antenna, planar antenna and array antenna. This project presents the design of a planar slot UWB antenna. The design is based on the slot UWB antenna by using a planar structure and designed for a frequency of 3.1 GHz to 10.6 GHz. The UWB antenna is achieved by applying parameter analysis in the design process. The slot UWB antenna design is simulated on Computer Simulation Technology (CST) Microwave Studio Software and fabricated on Flame Resistant 4 (FR4) substrate by using chemical etching techniques. The antenna achieved an absolute bandwidth of 7.2GHz with return loss - 25dB. An average gain obtained from simulation is within the range from 2dB to 5.3dB.

ABSTRAK

Sejak Suruhanjaya Komunikasi Persekutuan (FCC) melancarkan jalur lebar berfrekuensi 7.5 GHz (dari 3.1 GHz hingga 10.6 GHz), untuk komunikasi wayarles "Ultra Wideband (UWB)", UWB berkembang dengan pantas sebagai kadar data tinggi dalam komunikasi wayarles teknologi. UWB teknologi menjadi keperluan dalam sistem komunikasi disebabkan oleh permintaan yang tinggi untuk kapasiti data yang besar serta kadar penghantaran yang mempunyai kelajuan yang tinggi. Terdapat beberapa jenis antena UWB seperti antena dwikutub, bow-tie, TEM horn, slot antena UWB, antenna planar dan array. Projek ini bertujuan membina slot antena UWB. UWB antenna diperolehi melalui analisis parameter semasa proses rekaan. Antena tersebut disimulasi selesai, antena difabrikasi pada papan substratum Flame Resistant 4 (FR4) dengan menggunakan proses goresan. Antena tersebut mencapai jalur lebar 7.2GHz dengan kehilangan balikan -25dB. Purata kenaikan yang diperolehi melalui simulasi adalah antara 2dB hingga 5.3dB.

TABLE OF CONTENT

PROJECT TITLE i THESIS STATUS DECLARATION ii **RESEARCHER'S DECLARATION** iii **SUPERVISOR'S DECLARATION** iv DEDICATION V ACKNOWLEDGEMENT vi ABSTRACT vii ABSTRAK viii **TABLE OF CONTENTS** ix LIST OF TABLES xiii **LIST OF FIGURES** xiv LIST OF ABBREVIATIONS xvii LIST OF APPENDICES xix

I INTRODUCTION

CHAPTER TITLE

1.1	Introduction	1
1.2	Objectives	3
1.3	Problem Statement	3
1.4	Scope Of Work	3
1.5	Methodology	4

PAGE

2.1	Intro	duction to Ultra Wideband (UWB)	6
	2.1.1	Background	6
2.2	Anter	nna Theory	8
	2.2.1	Parameters of an Antenna	9
		2.2.1.1 Radiation Pattern	9
		2.2.1.2 Directivity	11
		2.2.1.3 Gain	12
		2.2.1.4 Frequency Bandwidth	12
	2.2.2	Requirements for UWB antenna	13
2.3	Copla	anar Waveguide (CPW)	15
	2.3.1	History of coplanar waveguide	15
	2.3.2	Types of coplanar waveguide	15
		2.3.2.1 Coplanar Waveguide	15
		2.3.2.2 Grounded Coplanar Waveguide	16
	2.3.3	Advantages and disadvantages of coplanar	16
		waveguide	
2.4	Type	s of Slot Ultra Wideband (UWB) Antenna	17
	Revie	ewed	
	2.4.1	Coplanar Waveguide-Fed Rectangular Slot	17
		Antenna	
	2.4.2	Elliptical Slot Antenna	18
	2.4.3	T Slots Antenna	19
	2.4.4	Cross Slot Antenna with U-Shaped Tuning Stub	20
	2.4.5	Circular and Elliptical CPW-Fed Slot Antenna	20
	2.4.6	Microstrip-Line-Fed Printed Planar Slot Antenna	21
	2.4.7	Microstrip Square-Ring Slot Antenna	22
	2.4.8	CPW-Fed Rectangular Slot Antenna with Tuning	22

Stub	
2.4.9 Microstrip Square-Ring Slot Antenna Filled by an	23
H-Shape Slot	
2.4.10 Rectangular Slot Antenna with Patch Stub	24

III SLOT ULTRA WIDEBAND (UWB) ANTENNA

3.1	Introd	duction	
3.2	Antenna Geometry		26
	3.2.1	Parameter Analysis	28
		3.2.1.1 Rectangular Slot	28
		3.2.1.2 U-shaped stub	28
		3.2.1.3 Center Conductor Width, W_f	29
		3.2.1.4 Slot Width, W_S	30
		3.2.1.5 Width, A	30
		3.2.1.6 Distance Between Slot and U-shaped, <i>B</i>	31
		3.2.1.7 Width, C	31
	3.2.2	Optimal Dimension of Design I	32
	3.2.3	Adding Element at the Center of the Slot	33
	3.2.4	Different Shape of Slot Antenna	34
3.3	Fabric	cation	35
3.4	Measu	urement Setup	38

IV RESULT ANALYSIS AND DISCUSSION

4.1	Parameter Analysis Result		40
	4.1.1	Effect of the rectangular slot	40
	4.1.2	Effect of the U-shaped stub	42
	4.1.3	Effect of the center conductor width, W_f	43

	4.1.4	Effect of the slot width, W_S	44
		Effect of the width, A	44
	4.1.6	Effect of the distance between slot and U-shaped,	45
		В	
	4.1.7	Effect of the width, C	45
	4.1.8	Optimal Design after Alteration	46
4.2	Simul	ation Results	47
	4.2.1	Return Loss and Frequency Bandwidth	47
	4.2.2	Radiation Pattern	48
	4.2.3	Antenna Gain and Directivity	49
4.3	Measu	ared Result	50
	4.3.1	Return Loss and Frequency Bandwidth	50
	4.3.2	Radiation Pattern	52
	4.3.3	Antenna Gain	55

V	CONCLUSION	
	5.1 Conclusion	56
	5.2 Future Work	57
	REFERENCES	58

63
(

LIST OF TABLES

TABLE TITLE

PAGES

3.1	Dimension of rectangular slot antennas	27
3.2	Optimal dimension for Design I	32
3.3	Optimal dimension of slot antennas	35
4.1	Simulated -10 dB bandwidth printed slot antennas	47
4.2	Half Power Beamwidth	49
4.3	Antenna gains for Design I and Design II	49
4.4	Simulated -10 dB bandwidth printed slot antennas for Design I	51
4.5	Simulated -10 dB bandwidth printed slot antennas for Design II	51
4.6	Half Power Beamwidth for Design I	52
4.7	Half Power Beamwidth for Design II	52
4.8	Antenna Gain for Design I and Design II	55

LIST OF FIGURES

FIGURE TITLE

PAGES

1.1	Flow Chart of Methodology	5
2.1	Antenna as a transition device	9
2.2	Radiation lobes and beamwidths of an antenna pattern	10
2.3	Linear Plot Of Power Pattern And Its Associated Lobes And	10
	Beamwidths	
2.4	Coplanar Waveguide	15
2.5	Grounded Coplanar Waveguide	16
2.6	Geometry of the CPW-Fed rectangular slot antenna (units in mm)	18
2.7	Geometry of the printed elliptical slot antenna	18
2.8	Geometry and Coordinate System of the T Slots Antenna	19
2.9	Geometry of the cross slot antenna	20
2.10	Geometry of the proposed CPW-fed slot antenna configuration	21
2.11	Geometry of printed planar slot antenna	21
2.12	Geometry of the SSRSA antenna	22
2.13	Geometry of the rectangular slot antenna	23
2.14	Geometry of the square-ring slot antenna	24
2.15	The geometry and parameters of the rectangular slot antenna with	24

patch stub

	Paren brac	
3.1	Geometry of CPW fed of Design I	26
3.2	Return Loss Simulation Result for Rectangular Slot Antenna	27
3.3	Alteration of the rectangular slot	28
3.4	Alteration of the U-shaped stub	29
3.5	Alteration of the center conductor width, W_f	29
3.6	Alteration of the slot width, W_s	30
3.7	Alteration of the width, A	30
3.8	Alteration of the length between slot and U-shaped, B	31
3.9	Alteration of the width, C	31
3.10	Geometry of the Antenna When Adding Elements	33
3.11	Geometry of Design II	34
3.12	The Antenna Layout	36
3.13	Fabricated CPW-Fed Slot Antenna	36
3.14	The Fabrication Process	37
3.15	Network Analyzer Setup	38
3.16	Measurement Setup	39
4.1	Return Loss Simulation Result of rectangular slot for different	41
	length	
4.2	Return Loss Simulation Result of rectangular slot for different	41
	width	
4.3	Return Loss Simulation Result for different length of U-shaped	42
	stub	
4.4	Return Loss Simulation Result for different width of U-shaped	43
	stub	
4.5	Return Loss Simulation Result for different W_f	43
4.6	Return Loss Simulation Result for different W_s	44
4.7	Return Loss Simulation Result for different width, A of U-shaped	45
	stub	
4.8	Return Loss Simulation Result for different length, B	45
4.9	Return Loss Simulation Result for different width, C	46

4.10	Return Loss Simulation Result for optimal design	46
4.11	Return Loss Simulation Result	47
4.12	Radiation Patterns Simulation Result	48
4.13	Return Loss Simulation Result for Design I	50
4.14	Return Loss Simulation Result for Design II	51
4.15	Radiation patterns of Design I	53
4.16	Radiation patterns of Design II	54

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

1G	-	First-generation
2G	-	Second-generation
3G	-	Third-generation
4G	-	Fourth-generation
A	-	Width of Stub
ABW	-	Absolute Bandwidth
AWGN	-	Additive White Gaussian Noise
В	-	Distance between slot and U-shaped
С	-	Width of Stub
CPW	-	Coplanar Waveguide
CPWG	-	Coplanar Waveguide with Ground
CST	-	Computer Simulation Technology
dB	-	Decibel
dBi	-	Decibel above isotropic
FBW	-	Fractional Bandwidth
FCC	-	Federal Communications Commission
FDTD	-	Finite-difference Time-domain
FR4	-	Flame Resistant 4
GHz	-	Giga Hertz

GPS	-	Global Positioning System
GSM	-	Global System for Mobile Communication
IEEE	-	Institute of Electrical and Electronics Engineers
ISM	-	Industrial Scientific and Medicine
L	-	Length
MHz	-	Mega Hertz
MIC	-	Microwave Integrated Circuit
mm	-	millimeter
MMIC	-	Monolithic Microwave Integrated Circuit
MSRSA	-	Microstrip Square-Ring Slot Antenna
PCB	-	Printed Circuit Board
SNR	-	Signal-to-Noise Ratio
SRSA	-	Square-Ring Slot Antenna
SSRSA	-	Split Square Ring Slot Antenna
UMTS	-	Universal Mobile Telecommunications System
UWB	-	Ultra Wideband
VSWR	-	Voltage Standing Wave Ratio
W	-	Width
W_{f}	-	Center Conductor Width
W_S	-	Slot Width
Wi-Fi	-	Wireless Fidelity
WLAN	-	Wireless Local Area Network
WPAN	-	Wireless Personal Area Network

LIST OF APPENDICES

APPENDIX TITLE

PAGES

А	Advantages of UWB	63
В	UWB applications	65
С	Microstrip	67
D	Results for Adding Element at the Center of the Slot	73

CHAPTER I

INTRODUCTION

1.1 Introduction

Ultra wideband (UWB) is currently receiving special attention in industry and academia. The technical improvements have also enabled a large number of new services to emerge. The first-generation (1G) mobile communication technology only allowed analogue voice communication while the second-generation (2G) technology realized digital voice communication. Currently, the third-generation (3G) technology can provide video telephony, internet access, video/music download services as well as digital voice services. In the near future, the fourth-generation (4G) technology will be able to provide on-demand high quality audio and video services, and other advanced services.

In recent years, more interest has been put into wireless personal area network (WPAN) technology worldwide. The future WPAN aims to provide reliable wireless connections between computers, portable devices and consumer electronics within a short range. Furthermore, fast data storage and exchange between these devices will also be accomplished. This requires a data rate which is much higher than what can be achieved through currently existing wireless technologies [1].

The maximum achievable data rate or capacity for the ideal band-limited additive white Gaussian noise (AWGN) channel is related to the bandwidth and signal-to-noise ratio (SNR) by Shannon-Nyquist criterion [2], as shown in Equation 1.1.

$$C = Blog_2(1 + SNR) \tag{1.1}$$

where C denotes the maximum transmit data rate, B stands for the channel bandwidth.

Equation 1.1 indicates that the transmit data rate can be increased by increasing the bandwidth occupation or transmission power. However, the transmission power cannot be readily increased because many portable devices are battery powered and the potential interference should also be avoided. Thus, a large frequency bandwidth will be the solution to achieve high data rate.

On February 14, 2002, the Federal Communications Commission (FCC) of the United States adopted the First Report and Order that permitted the commercial operation of UWB technology. Since then, UWB technology has been regarded as one of the most promising wireless technologies that promises to revolutionize high data rate transmission and enables the personal area networking industry leading to new innovations and greater quality of services to the end users [3].

1.2 Objectives

The main objective of this project is to design and implement slot Ultra Wideband (UWB) antenna for UWB application. The UWB antenna should be capable of operating over an ultra wide bandwidth as allocated by the FCC with bandwidth requirement from 3.1GHz to 10.6GHz and return loss below than -10dB.

1.3 Problem Statement

In recent years, there has been an increase in the demand of large capacity of data and high speed data transmission rate. The limited bandwidth for wireless communication system is a drawback for the requirement of large capacity of data rate [1]. Besides the demand for small size and compact profile antennas, broadband ones are often required in order to cover simultaneously several bands. UWB is rapidly advancing as a high data rate wireless communication technology [4]. A slot UWB antenna is designed to have a larger bandwidth with large capacity of data and high speed data transmission rate.

1.4 Scope Of Work

The slot UWB antenna is designed by using planar slot structure and simulated by using CST software in order to obtain the return loss, frequency bandwidth, gain, directivity, and radiation pattern. Then the antenna is fabricated on FR4 board by using chemical etching technique. Finally, analysis has been done to compare between the simulation and the measurement result.

1.5 Methodology

This project involves five major phase as shown in Figure 1.1. Firstly, a literature review was carried out from various sources such as journals, articles, books, and technical reports on UWB antenna. All the basic parameters such as its shape, dimensions, and all the mathematical parameters like its return loss, wavelength, directivity, VSWR and etc is analyzed and comprehended.

Then, the slot UWB antenna is designed by using planar slot structure. The UWB antenna should be capable of operating over an ultra wide bandwidth from 3.1GHz to 10.6GHz.

The CST software implementation is studied to design the antenna. The design that has been made with all parameters attained is then simulated using CST to analyze the antenna performance in order to obtain the return loss, frequency bandwidth, gain, directivity, and radiation pattern. If the design is not achieved a good performance, the design is being altered or redesign.

The UWB antenna is then fabricated on FR4 board by using chemical etching technique to validate the simulated prediction. Lastly, the return loss, gain, radiation pattern and frequency bandwidth are measured. The simulation results are compared to measurement results.

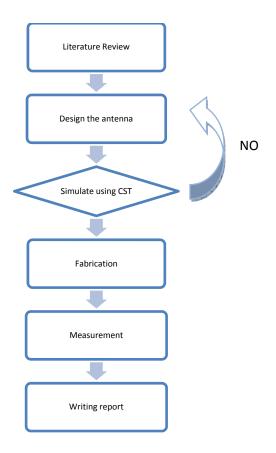


Figure 1.1 Flow Chart of Methodology