

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

REMOTE SENSING WALKER

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotic and Automation) with Honours.

by

ABDUL 'ALIM BIN ABDULLAH

FACULTY OF MANUFACTURING ENGINEERING 2008/2009

UNIVERSITI TEKNIKAL MALAYSIA MELAKA				
BORAN	NG PENGESAHAN STATUS LAPORAN PSM			
JUDUL: <u>"REMOTE SENS</u>	SING WORKER"			
SESI PENGAJIAN: 2/2008-	2009			
Saya <u>ABDUL 'ALIM BIN</u>	ABDULLAH			
	esis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Feknikal Malaysia Melaka (UTeM) dengan syarat-syarat :			
 Tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. *Sila tandakan (√) 				
	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)			
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)			
(TANDATANGAN I	PENULIS) (TANDATANGAN PENYELIA)			
Alamat Tetap: KG.BATU 31, 18500 MACHANG, KELANTAN DARUL N	AIM. Cop Rasmi: SILAH HAYATI BINTI KAMSANI Pensyarah Fakulti Kejurutersah Pembuatan Universiti Teknika: Malaysia Melaka Karung Berkunci 1200, Hang Tuah Jaya, Ayer Keroh, 75450 Melaka.			
Tarikh: 13 MEL	2009 Tarikh: 13 Mél 2009			
	IAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkena bab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD			

DECLARATION

I hereby declare that this report entitled "Remote Sensing Walker" is the result of my own research except as cited in the references.

:

:

:

Author's Name Date

Signature

Abdul 'Alim Bin Abdullah

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation) with Honours. The members of the supervisory committee are as follow:

(Main Supervisor)

(Official Stamp & Date) SILAH HAYATI BINTI KAMSANI Pensyarah Fakutti Keluruterses Pembuatan Universiti Teknika ukaiaysia Melaka Karung Berkunci 1200, Hang Tuah Jaya, Ayer Keroh, 75450 Melaka. 13/5/2005

ABSTRACT

Remote Sensing Walker (RSW) is a walking support system or assistive device that is capable of supporting people with walking difficulties such as elderly, handicapped persons and persons with leg injuries such as under rehabilitation. RSW consists of a support frame, control box, two castors and two wheels with motor attached to it. Power supply and control circuit are placed inside the control box. The brain of the RSW that is microcontroller, which is part of the control circuit, controls the movement of the two motors in which consequently controls the direction of the RSW. There are three input mechanisms of the RSW in which the user can control to move and direct the RSW that are on-board buttons, handheld remote control and photo-electric sensors. The on-board buttons and handheld remote control navigates the RSW to move in various directions that are left, right, forward, and reverse. To further enhance the capability of RSW to detect obstacle in front, the RSW is equipped with two photo-electronic sensors at the front of support frame. Immediately after an obstacle is detected, the two motors will automatically halt. The main advantage of RSW is that it can be remotely control using radio frequency remote control in which it is capable to be parked out of the way and return back to the user when the user is ready to leave. In fact, the RSW has power assisted device (motor) that increase its mobility. Furthermore, RSW is a mobility aid to encourage walking among people with walking difficulties to reduce the risk of muscle entropy, wasting or loss of muscle tissue resulting from disease or lack of use.

ABSTRAK

Remote Sensing Walker (RSW) adalah sejenis alat bantuan atau sokongan semasa berjalan dimana ianya berupaya untuk menyokong seseorang yang mengalami kesukaran untuk berjalan seperti orang tua, orang kurang upaya dan orang yang mengalami kecederaan pada kaki yang memerlukan pemulihan. RSW terdiri daripada rangka sokongan, kotak kawalan, dua 'castor' serta dua tayar yang dilengkapi dengan motor. Disamping itu, bateri dan litar kawalan pula diletakkan di dalam kotak kawalan. 'Brain' RSW ialah 'microcontroller' iaitu salah satu komponen pada litar kawalan yang mana ianya bertindak untuk mengawal pergerakan motor dan juga arah pergerakan RSW. Terdapat tiga mekanisma input pada RSW yang mana pengguna boleh mengawal pergerakan dan arah RSW dengan menggunakan butang yang terletak pada bahagian atas rangka RWS.Selain daripada itu, pengguna juga boleh menggunakan alat kawalan jauh untuk mengerakkan RWS samada ke kiri, ke kanan, kehadapan atupun kebelakang. Untuk meningkatkan keupayaan RSW bagi mengesan sesuatu halangan di hadapan, ianya dilengkapkan dengan dua 'photo-electronic sensor' yang diletakkan dihadapan rangka sokongan yang mana sekiranya halangan dikesan, kedua-dua motor akan terhenti secara automatik. Kelebihan utama RSW ini ialah, ianya boleh dikawal pada jarak yang jauh dengan menggunakan alat kawalan jauh (Radio frequency remote control). Pengguna boleh menempatkan atau meletakkan RSW tanpa bergerak dan juga boleh mengembalikan semula kepada pengguna dengan hanya menggunakan alat kawalan jauh tersebut. Pada asaanya, RSW ini mempunyai motor yang berupaya meningkatkan mobilitinya. Tambahan pula, alat bantuan ini boleh menggalakkan aktiviti berjalan bagi mereka yang mengalami kesukaran ketika berjalan yang mana ianya dapat mengurangkan risiko 'entropy' otot semasa melakukan aktiviti tersebut.

ACKNOWLEDGEMENTS

All Praise to Allah, the Lord of the Worlds, and prayers and peace be upon Muhammad Rasulullah S.A.W, His servant and Messenger. Alhamdulillah, with Allah blessings and guidance, I have completed this project successfully even though along the way, there are many hardship and obstacles.

First of all, I would like to acknowledge the inspiring professionalism and dedicated support of my thesis supervisor, Pn.Silah Hayati binti Kamsani, because willing to spend time, sharing experience, guidance and encouragement to accomplishing this project.

Her constant guidance and support during my thesis writing is invaluable to me and continuous direction and opinion regarding the flow of the project has an invaluable contribution to achieve the objectives of the project.

Finally, I would like to thank all lectures, technicians and colleagues who had involved directly or indirectly in my project.

TABLE OF CONTENTS

Decl	arati	on	i
App	roval		ii
Abst	ract		iii
Abst	rak		iv
Ack	nowl	edgements	V
Tabl	e of (Contents	vi
List	of Fi	gures	xi
List	of Ta	able	xiv
List	of Al	bbreviations	XV
1. IN	TRO	ODUCTION	1
1.1	Pro	blem Statement	2
1.2	Obj	ective	2
1.3	Sco	pe of Project	3
2. L	ITEF	RATURE REVIEWS	4
2.1	Intr	oduction	4
2.2	Wal	lker	4
2.2	2.1	Push Walker	5
2.2	2.2	Lift Walker	5
2.2	2.3	Powered Walker having Integrated Parallel Bars	6
2.2	2.4	Powered Walker	7
2.3	Cor	nparison Types of Walker	7
2.4	Mee	chanical Structure (Material)	8
2.4	I .1	Square Hollow Steel	8
2.4	1.2	Aluminum Profile	9
2.4	1.3	Comparison Types of Material	10
2.5	Mot	tor	10

2.5.1	DC Motor	10
2.	5.1.1 Power Window Motor	11
2.	5.1.2 Gear motor	11
2.5.2	Comparison Types of DC Motor	12
2.6 C	Control Circuit by Transistor	12
2.6.1	Forward and Reverse Circuit using Transistor	12
2.7 E	lectrical and Electronic Components	13
2.7.1	Relay	13
2.7.2	Speed Controller	14
2	.7.2.1 Mechanical Speed Controller	14
2	.7.2.2 Electronic Speed Controller	15
2	.7.2.3 Comparison Types of Speed Controller	16
2.7.3	Battery	16
2	.7.3.1 Lithium-ion	16
2	.7.3.2 Lead-acid	17
2	.7.3.3 Comparison Types of Battery	18
2.8 N	Iechanical Components	18
2.8.1	Rubber Wheel	18
2.8.2	Polyolefin Wheel	19
2.8.3	Comparison Types of Wheel	20
2.9 I	Remote control	20
2.9.1	RF (radio frequency) remote control	20
2.9.2	Wireless remote control	21
2.9.3	Comparison Types of Remote Control	22
2.10	Sensor	22
2.10.	1 Proximity Sensor	23
2.10.	2 Inductive Proximity Sensor	23
2.10.	3 Comparison Types of Sensor	24
2.11	Programmable controller	24
2.1	.1 Microcontroller	24
	2.11.1.1 Central Processing Unit (CPU)	25

	i. Computer Operation Codes (Opcode)	25	
	ii. Program Counter (PC)	26	
	iii. Instruction Register (IR)	26	
	iv. The Arithmetic Logic Unit (ALU)	27	
	v. Input/output Ports	28	
2.	.11.2 Programmable Logic Controller (PLC)	28	
2.	.11.3 Comparison Types of Programmable Controller	29	
3. M	IETHODOLOGY	30	
3.1	Introduction	30	
3.2	Problem Statement	30	
3.3	Planning	31	
3.4	Research about Project	32	
3.5	Designing	32	
3.6	3.6 Procurement 3		
3.7	3.7 Fabrication and Testing 3		
3.8	Improvement or Modification	34	
4. D	ESIGN AND DEVELOPMENT	36	
4.1	Introduction	36	
4.2	Remote Control Circuit Design	36	
4.2	2.1 2 Channel RF Remote Control Transmitter	36	
4.2	2.2 2 Channel RF Remote Control Receiver	37	
4.2	2.3 The Power Supply of RF Receiver	38	
4.3	Forward and Reverse Motor Circuit	39	
4.4	DC Motor Drive	40	
4.5	Photoelectric Sensor Circuit	41	
4.6	Controller Development of Remote Sensing walker	42	
4.6	6.1 Procedures to Develop the Controller Circuit	42	
4.6	6.2 PIC 16F876A Programming	44	
	4.6.2.1 Flow Chart of PIC Programming	45	

4.7	7 Mechanical Structure 4				
4.′	4.7.1 Motor Bracket				
	4.7.1.	1 Procedures to Develop the Motor Bracket	47		
4.′	7.2 \$	Switch Box Holder	49		
	4.7.2.	1 Procedure to Develop the Switch Box Holder	49		
4.7	7.3 S	Shaft	51		
	4.7.3.	1 Procedures to Develop the Shaft	52		
4.′	7.4 0	Castor Wheel Holder	53		
	4.7.4.	1 Procedures to Develop the Castor Wheel Holder	53		
4.8	Bill of	f Material (B.O.M)	56		
4.9	Speci	fication of Remote Sensing Walker	57		
5. F	RESUL	T AND DISCUSSION	58		
5.1	Resul	t	58		
5.	1.1 E	EXPERIMENT 1: Smooth Surface and Rugged Surface	58		
5.	1.2 E	EXPERIMENT 2: Detection of Obstacle	61		
5.	1.3 E	EXPERIMENT 3: Hilly road (uphill)	65		
5.2	Discu	ssion	66		
6. C	ONCL	USION	68		
6.1	Concl	usion	68		
6.2	Sugge	estion For Further Works	69		
REI	FEREN	ICES	70		

LIST OF FIGURES

2.1	Push Walker	5
2.2	Lift Walker	6
2.3	Powered Walker having Integrated Parallel Bars	6
2.4	Powered Walker	7
2.5	Square Hollow Steel	9
2.6	Aluminum Profile	9
2.7	Power Window Motor	11
2.8	Gear motor	11
2.9	Forward and Reverse Circuit using Transistor	13
2.10	Electrical and Electronic Relay	14
2.11	Mechanical Speed Controller	15
2.12	Electronic Speed Controller	15
2.13	Lithium-ion battery	17
2.14	Lead-acid Battery	17
2.15	Rubber Wheel	19
2.16	Polyolefin Wheel	19
2.17	RF Remote Control	21
2.18	Wireless Remote Control	21
2.19	Inductive Proximity Sensor	23
2.20	Photoelectric Sensor	23
2.21	Microchip	25
2.22	Example of Program Counter	26
2.23	Instruction Registers	27
2.24	Block Diagram of ALU	27
2.25	I/O Pin	28
2.26	Programmable Logic Controller	29
3.1	Gantt Chart	31

4.1	Schematic of the Transmitter	37
4.2	Schematic of the Receiver	38
4.3	The Power Supply of RF Receiver	39
4.4	Forward and Reverse Motor Circuit	40
4.5	DC Motor Drive	41
4.6	Photoelectric Sensor Circuit	41
4.7	Placing the Electronic Component On the Strip Board	42
4.8	Soldering process	43
4.9	Cutting the Strip Board	43
4.10	Checking the Strip Board	43
4.11	Motor Bracket	46
4.12	Measurement Process	47
4.13	Cutting process	47
4.14	Filing Process	47
4.15	Drilling Process	48
4.16	Bending Process	48
4.17	Switch Box Holder	49
4.18	Measurement Process	49
4.19	Cutting Process	50
4.20	Filing Process	50
4.21	Bending Process	50
4.22	Drilling Process	51
4.23	Shaft	51
4.24	Cutting Process	52
4.25	Lathe Process	52
4.26	Castor Wheel Holder	53
4.27	Measurement Process	53
4.28	Cutting Process	54
4.29	Filling Process	54

35

3.2

Methodology Flow Chart

4.30	Drilling Process	54
4.31	Bending Process	55
5.1	A human control the motion of the RSW manually	58
5.2	The motion of the RSW is control by remote control	59
5.3	Maximum Distance of the Photo-electric Sensor to Detect the	60
	Obstacle	
5.4	Angle and Maximum Distance of Photo-electric Sensor to detect	61
	the Obstacle	
5.5	A human control the motion of RWS which when it detects the	62
	obstacle and automatically halts	
5.6	The Motion of RWS Control by Using Remote Control which	63
	When It Detects the Obstacle and Automatically Halts	
5.7(a)	A Human Control the Motion of the RSW	64
5.7(b)	The Motion of RSW Control by Using Remote Control	64

LIST OF TABLES

4.1	PIN Assignment of PIC	44
4.2	Bill of Material	50

LIST OF ABBREVIATIONS

DC	-	Direct Current	
MSC	-	Mechanical Speed Controller	
ESC	-	Electronic Speed Controller	
CPU	-	Central Processing Unit	
PC	-	Program Counter	
ALU	-	Arithmetic Logic Unit	
AVR	-	Automatic Voltage Regulator	
PLC	-	Programmable Logic Controller	

CHAPTER 1 INTRODUCTION

Handicapped walker is a tool for disabled people who need additional support to maintain balance or stability while walking. According to Muiza, handicapped walker is available in sizes such as Pediatric (for children) or Bariatric (for overweight or obese persons). Handicapped walker is a good tool for those who are recuperating from leg or back injuries. It is also commonly used by persons who are having problems with walking or mild balancing problems. Basically, the handicapped walker has two main types; lift walkers or push walkers. Lift handicapped walkers are usually four points of ground contact with two of the points being rubber tips and the other two small rolling wheels. Beside that, push handicapped walkers have bigger tires and it has better the traction and easy to use.

Nowadays, a modern walker is popular because it is can be made adjustable in term of its height or wide which can be set according to what is comfortable for the user. Modern walker is commonly safe, more convenience and as a wheeled walking aid it has more durable parts. Beside that, modern walkers also use tubular seats, back seats and baskets with spacers and cushions, and are equipped with latches and release buttons for movement.

1.1 Problem Statement

Traditionally, a handicapped walker is picked up and placed a short distance ahead of the user. The user then walks to it and repeats the process. If the elders or handicapped person have to move using manual walker, they must raised the walker step by step where it is very difficult and requires more energy to the user. Using the remote sensing walker, the users only need to push the switch at RF remote control and on the walker frame to move in various directions that are left, right, forward, and reverse. It also provides two photo-electric sensors and ability to detect the obstacle in front. This walker is easily park or return to the user where it only need the depressing of the switch at RF remote control and it also facilitate the user to go to anywhere without inconveniencing other people.

1.2 Objectives

- i. To develop the remote sensing walker and should equipped with various types of component.
- ii. To develop the RF remote control to use with the walker.

1.3 Scope of Project

The scope of this project is to develop the walker which can be used by elders or handicapped person that can be controlled using remote sensing. This walker is suitable for general purpose which it provides a stable and mobile walking frame and is adapted to move forward or reverse and move left or right according to a users needs. This walker can be operate by using lead acid battery 12VDC (Power window motor), 10VDC (Receiver circuit) and 9VDC (Transmitter circuit). The user controls the movement of the walker by depressing a switch at RF remote control or switch at the walker frame and the speed of this walker also can be controlled. This walker can be used if the users want to go to indoor or outdoor environment such as cafeteria, playground or other place. If users want to put the walker somewhere, it only need to use RF remote to move the walker to certain place or parking area. This walker also can be returned to the user when signaled by RF remote control.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

This chapter will present the literature reviews relevant to this project. It includes walker, mechanical structure, motor, and control circuit by transistor, electrical and electronic components, mechanical components, remote control, sensor, and programmable controller. The entire thing in this chapter must be considered to develop this project.

2.2 Walker

Walker is one device used to provide support to adult or some that recovered from leg injury or waist and others. It is also commonly used by persons having problems with walking or with mild balance problems. Commonly the walkers have two types such as lift walker and push walker (1stSenior Care, 2007).

2.2.1 Push Walker

Usually, push walkers are good for carpet area and has the big tire where it is better for movement. Push walkers have become so popular that walkers are now offered with many options. Some walkers have seats so the elders can take a break from the walking and sit for awhile. The push walkers are also more stable than the lift walkers. The reason for this is the bigger wheels and there is constant contact with the floor compare to intermittent contact with the floor when using the lift walker. Push walkers are also easily adjust to different floor surfaces .While the elder may have more contact with linoleum but when they do come in contact with carpeting it can be dangerous (1stSenior Care, 2007).

Figure 2.1: Push walker (1stSenior Care, 2007).

2.2.2 Lift Walker

Basically, lift walkers are usually four point of ground contact with two of the points is rubber tips and it can be changing the frame with a large number of height and wide adjustments. This walker has good stability and easy to use. Beside, this walker is lightweight and easy to lift (Allegro Medical, 1997).

Figure 2.2: Lift walker (Allegro Medical, 1997).

2.2.3 Powered Walker having Integrated Parallel Bars

This walker is an integrated powered walker and parallel bar to provide a stable and easy to use .This walker also to move forward according to a user need. The user can be controls the movement of this walker by depressing a switch. Beside, the user can also control the speed of this walker (Lathrop, 1996).

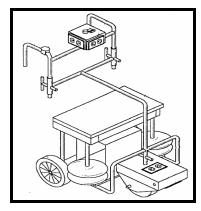


Figure 2.3: Powered walker having integrated parallel bars (Lathrop, 1996).

2.2.4 Powered Walker

This walker includes a frame assembly and has space for containing an operator in a standing position. When operators enter inside this walker, gate can be covered and opened. This gate purpose is to operator safety. This walker has a seat which can be adjustable either in horizontal or vertical direction. Beside that, this walker has a switch to control the movement either forward or reverse (Houston, and Metzger 1989).

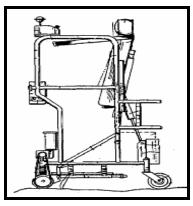


Figure 2.4: Powered walker (Houston and Metzger, 1989).

2.2.5 Comparison Types of Walker

Types of walker	Advantages	Disadvantages
Push Walker	• Good for carpet area.	• Easy loss of control
	• More stable.	• Difficult to move at
	• Easily adjust to	rugged surface.
	different floor	
	surfaces.	
Lift Walker	• Lightweight and easy	• Not suitable for
	to lift.	carpet area.
	• Rigid dual sides brace	• Not stable.
	design.	

Powered Walker having	• Can move forward	• Difficult to press the
Integrated Parallel Bars	according user need.	switch.
	• Have a switch for	• Lack of stability.
	movement.	
Powered Walker	• Has adjustable seat.	• Fairly heavy.
	• Has a switch to control	• Difficult to adjust
	the movement either	the seat in
	forward or reverse.	horizontal and
		vertical.

2.4 Mechanical Structure (Material)

Mechanical structure is very important to develop the walker. Selection of material will influence the stability of walker. To obtain the best structure of walker, the materials that must be considered are:

2.4.1 Square Hollow Steel

Square hollow steel is lightweight and easy to weld. This steel has higher strength and easy to bend. Square hollow steel is used for construction structure, machinery, container, hall structure, offshore oil field, sea trestle, motorcar cassis, airport structure, shipbuilding, automotive parts and so on. To prevent rust, this steel must be oiled or black painted (Vortex Technologies Ltd.).