

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN IMPROVEMENT ON SUPPORT SYSTEM FOR RESIN BASED 3D PRINTER

This report submitted accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) with Honours.

by

CHE ROZAIDA BT CHE MOD

FACULTY OF MANUFACTURING ENGINEERING

MAY 2009

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

JUDUL: Design Improvement on Support System for Resin Based 3D Printer

SESI PENGAJIAN: 2008/2009 Semester 2

Saya : CHE ROZAIDA BT CHE MOD

mengaku membenarkan laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.

**Sila tandakan ($\sqrt{}$)

SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh:

(TANDATANGAN PENULIS)

TIDAK TERHAD

(TANDATANGAN PENYELIA)

Alamat Tetap: Lot.501, Kg. Cherang Melintang, 16210 Tumpat, Kelantan.

Tarikh:

Tarikh: _____

Cop Rasmi:

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh Laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Design Improvement on Support System for Resin Based 3D Printer" is the result of my own research except as cited in references.

Signature

: Howeld

Author's Name: Che Rozaida Bt Che Mod

Date : 11 May 2009

•

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) with Honours. The member of the supervisory committee is as follow:

WAHYONO SAPTO WIDOBO Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

En. Wahyono Sapto Widodo

(PSM Supervisor)

ABSTRACT

Stereolitography is one of the rapid prototyping systems that can produce a part with high accuracy and good surface finish. Stereolitography is a three-dimensional building process and can produce a solid plastic model. The device that is called Stereolitography Apparatus (SLA) is used to produce the part using stereolitography system. Nevertheless, SLA has its own disadvantages. This apparatus needs support structures. Other than that, there is a problem occurred on the support system. This project presented the research on the support system for resin based 3D printer and E-Darts machine is used for this purpose. Overall system for this machine understands first including support system. Then, the specimen is design using CAD software and produces it using E-Darts machine while the ultraviolet (UV) laser traces two-dimensional cross-sections on the surface of a liquid resin(photosensitive liquid plastic). Problem occurred on the support system can be examined. Suggestion for designs improvement can be create. The better design is chosen to make an improvement. Thus, the problem occurred on the support system can be reduce.

ABSTRAK

Streolitografi merupakan salah satu sistem rapid prototyping yang boleh menghasilkan sesuatu bahagian (objek) dengan ketepatan yang tinggi dan permukaan yang baik. Stereolitografi merupakan proses pembentukan tiga dimensi dan dapat menghasilkan model pepejal plastik. Peralatan yang dikenali sebagai Aparatus Stereolitografi (SLA) digunakan untuk menghasilkan sesuatu bahagian (objek) meggunakan sistem stereolitografi. Walaubagaimanapun, Aparatus Stereolitografi (SLA) mempunyai keburukan yang tersendiri. Apparatus ini memerlukan struktur sokongan. Selain daripada itu, terdapat juga masalah yang berlaku pada sistem sokongan. Projek ini dijalankan untuk menunjukkan kajian terhadap sistem sokongan bagi pencetak resin tiga dimensi dan mesin E-Darts digunakan bagi tujuan ini. Keseluruhan sistem bagi mesin ini difahamkan terlebih dahulu termasuklah sistem sokongan. Kemudian, spesimen direka bentuk menggunakan software Reka bentuk Terbantu Komputer (CAD) dan seterusnya dihasilkan menggunakan mesin E-Darts di mana laser ultra-ungu mengesan keratan rentas pada permukaan cecair resin (cecair plastik fotosensitif). Masalah yang berlaku pada sistem sokongan dapat dikaji. Cadangan bagi pembaikan rekabentuk sistem sokongan dapat diberikan. Reka bentuk yang terbaik akan dipilih untuk dibuat pembaikan. Dengan itu, masalah yang berlaku pada sistem sokongan dapat dikurangkan.

DEDICATION

To my beloved family.

ACKNOWLEDGEMENT

First of all, I would like to express special appreciation to my supervisor, En Wahyono Sapto Widodo for his great patience guiding me, give an advice, opinion, help and also support me in the process to finish this project. Thank you so much for your good support, various suggestion and comments.

I also would like to express gratitude to Puan Ruzy Haryati Bt Hambali as my supervisor for PSM 1 with her guidance start from the title selection.

Then, I want to express my special appreciation to my parent, brother and sisters for their encouragement and support during doing this project. Also to En. Mohd Fairus B. Ninggal, thanks for your advice and suggestion. Finally, thank you to all of the lectures and staff of Faculty of Manufacturing Engineering UTeM that give me full cooperation to carry out this project.

TABLE OF CONTENT

Abstract	i
Abstrak	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	V
List of Tables	ix
List of Figures	Х
List of Abbreviations	xiv
1. INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	2
1.3 Objective	3
1.4 Scope	3
2. LITERATURE REVIEW	4
2.1 Rapid Prototyping	4
2.1.1 What is the Rapid Prototyping?	4
2.1.2 Classification of the Rapid Prototyping Processes	5
2.1.3 Characteristic of Additive Rapid-Prototyping	7
2.2 Liquid-Base Rapid Prototyping System	9
2.2.1 Additive Processes	9
2.3 Stereolitography	10
2.3.1 Process of Stereolitography	10
2.3.2 Principle of SLA	12
2.3.3 Advantages and Disadvantages of SLA	13
2.4 Photopolymers	13
2.4.1 Photopolymerization	14
2.5 Supports System	16

2.5.1 Supports	16
2.5.2 Support System for Stereolitography	18
2.6 Support System for another Rapid Prototyping System	20
2.6.2 Support System for Fused Deposition Modeling System	24
3. METHODOLOGY	25
3.1 Flow Chart	25
3.2 Details of Methodology	29
3.2.1 Get the Title for PSM	29
3.2.2 Understand About the Title	29
3.2.3 Identify Requirement of the Title	29
3.2.4 Search the Information about Rapid Prototyping, Types and Process	29
3.2.5 Search Journals about Support Structure for Resin Based 3D Printer	29
3.2.6 Review the Journals	29
3.2.7 Gather the Information	30
3.2.8 Design the Specimen Using Software	30
3.2.9 Produce the Specimen Using Resin Based 3D Printer	30
3.2.10 Study the Support Structure	30
3.2.11 Investigate the Problem Occurred On Support System	30
3.2.12 Suggestion Improvement for the Support System	30
3.2.13 Validation	30
3.2.14 Design Improvement	30
3.2.15 Documentation for Final Project	31
4. PROJECT DESIGN	32
4.0 Project Background	32
4.1 Details of the Project	33
4.1.1 Apparatus	34
4.1.2 Components inside E-Darts Printer	35
4.1.3 Materials	36
4.1.4 Procedures	37

4.1.4.1 Stage 1: Design the Specimen	37
4.1.4.2 Stage 2: Preparation for the Construction	38
4.1.4.3 Stage 3: Setting for the Construction Conditions	41
4.1.4.4 Stage 4: Construction	43
4.1.4.5 Stage 5: Study the Support Structure	47
4.1.4.6 Stage 6: Design an Improvement for the Support Structure	48
4.1.4.7 Stage 7: Produce the Prototype	60
4.1.4.8 Stage 8: Analyze the Design	64
5. RESULT	65
5.1 Designs with Screw	66
5.2 New Design with Screw	67
5.3 Prototype Produce by Using FDM Machine	68
5.4 Construction Base Holder and Support Base after Hole Making	69
5.5 Result from the Design Analysis Using CosmosXpress	70
5.5.1 Analysis for the Construction Base Holder	70
5.5.2 Analysis for the Support Base	74
5.5.3 Analysis for the Screw	78
6. DISCUSSION	82
6.1 Current Design	83
6.2 New Design (After Improvement)	85
6.3 Result Obtained from Stress Analysis Using CosmosXpress	88
7. CONCLUSION AND RECOMMENDATION	89
7.1 Conclusion	89
7.2 Recommendation	90
REFERENCES	91

APPENDICES

- A Gantt chart for PSM 1
- B Gantt chart for PSM 2
- C Design with Screw (1) Before Improvement
- D Design with Screw (2) After Improvement
- E Design with Clip
- F Design with Glue Gun
- G Current Design

LIST OF TABLES

- 2.1: Characteristic of Additive Rapid-Prototyping Technologies
- A 1 Gantt chart for PSM 1
- A 2 Gantt chart for PSM 2

LIST OF FIGURES

2.1	The Computational Steps in Producing a Stereolitography File	5
2.2	Schematic Illustration of the Stereolitography Process	11
2.3	The Principle of Stereolitography	11
2.4	Schematic Diagram of the Stereolitography (SLA) System	12
2.5	Schematic for A Simplified Free-Radical Photopolymerization	15
2.6	Transformation of Solid Model to Hatched Base Support	18
2.7	Support for Stereolitography System	19
2.8	E-Darts Process	20
2.9	Regions to Be Supported	22
2.10	Example of Self-Supporting Region	22
2.11	Region That Cannot Be Supported By Adjacent Sheet	23
2.12	Deflection of Sheet	24
2.13	Fused Deposition Modelling	24
3.1	Flow Charts for PSM	26
4.1	Computer	34
4.2	E-Darts Printer	34
4.3	Support Base (large size)	34
4.4	Support Base (small size)	34
4.5	Leveler	34
4.6	Syringe	34
4.7	Weighing Scale	35
4.8	Gloves	35
4.9	Inside E-Darts Printer	35
4.10	Support Base	35
4.11	Construction Base Holder	36
4.12	Side View of Construction Base Holder and Support Base	36
4.13	Liquid Resin Bath	36

4.14	Resin (KAYARD NAF-20)	36
4.15	Hardener	36
4.16	Specimen Design	37
4.17	Preparation for Construction	38
4.18	Preparation for Construction	38
4.19	Preparation for Construction	39
4.20	Preparation for Construction	39
4.21	Preparation for Construction	39
4.22	Preparation for Construction	40
4.23	Construction Base Holder and Construction Base	40
4.24	Windows E-Darts Controller	41
4.25	Parameter List Window	43
4.26	Start Support Construction	44
4.27	X, Y and Z Control Panel	45
4.28	Special Parameter Dialog Box	46
4.29	Holder Base and Resin Bath Condition	47
4.30	Support Base and Construction Base Holder	47
4.31	Current Design	48
4.32	Exploded View Drawing	49
4.33	Construction Base Holder Part	49
4.34	Construction Base Part	50
4.35	Support Base Part	50
4.36	Screw	51
4.37	Design with Screw	52
4.38	Exploded View	52
4.39	Exploded View Drawing	53
4.40	Design with Screw	54
4.41	Exploded View	54
4.42	Clip	55
4.43	Design with Clip	55
4.44	Exploded View	56

4.45	Exploded View Drawing	56
4.46	Glue Gun	57
4.47	Design with Glue Gun	58
4.48	Exploded View	58
4.49	Exploded View Drawing	59
4.50	FDM Machine (FDM 400mc)	60
4.51	Dimension for the Construction Base Holder Part	61
4.52	Drawing for the Construction Base Part	62
4.53	Material for New Support Base (acrylic)	63
4.54	Jigsaw	63
4.55	File	63
4.56	Hand Drill with Tool Size 2.5mm	63
4.57	Tap Wrench	64
4.58	Center Punch	64
5.1	Assemble Drawing for Design with Screw	66
5.2	Exploded View	67
5.3	Holder Part	68
5.4	Base Part	68
5.5	Construction Base Holder and Construction Base Part	68
5.6	Construction Base Holder	68
5.7	Support Base with New Size	69
5.8	New Design	69
5.9	Stress Result for Construction Base Holder	71
5.10	Deformation Result for Construction Base Holder	72
5.11	Design Check Result for Construction Base Holder	73
5.12	Stress Result for Support Base	75
5.13	Deformation Result for Support Base	76
5.14	Design Check Result for Support Base	77
5.15	Stress Result for Screw	79
5.16	Deformation Result	80

5.17	Design Check Result for Screw	81
6.1	Current Design	82
6.2	New Design	82
6.3	Construction Base with Constructions Base Holder	83
6.4	Support Base	83
6.5	Current Design	83
6.6	Construction Base Holder	85
6.7	Support Base	85
6.8	Screw (M3 x 8)	85
6.9	New Design	85
6.10	Current Size for Support Base	87
6.11	New Size for Support Base with Hole	87

LIST OF ABBREVIATIONS

- ABS Acrylo-nitrile Butadiene Styrene
- CAD Computer Aided Design
- CPU Central Processing Unit
- DSPC Direct Shell Production Casting
- EB Electron-Beam
- FDM Fused Deposition Modeling
- PCA Post-Cure Apparatus
- **RP** Rapid Prototyping
- RP & M Rapid Prototyping and Manufacturing
- SLA Stereolithography
- SLS Selective Laser Sintering
- UV Ultra-Violet
- 2D Two Dimensional
- 3D Three Dimensional

CHAPTER 1 INTRODUCTION

The purpose of this project is to make a design improvement on support system for resin based 3D printer. The basic concept of rapid prototyping must be understand first. Then, support system for resin based 3D printer was studied. By using 3D printer, 3D object can be created by layering a material (plaster, cornstarch, resins) and it consist of an inkjet layering printing system. 3D object can be created with a short time compared to the other method. To examine the problem on support system, the main cause was investigated and step to avoid this problem from occurred again will be done by doing a design improvement on the machine. Some improvement on the support system for resin based 3D machine is needed to make sure that this machine can perform it task with efficient and perfectly. By doing this research this problem can be solved.

1.1 Background

Rapid prototyping (RP) is a terms which embraces a range of new technologies for producing accurate parts directly from CAD models in a few hours, with little need for human (Pham, D.T. and Gault, R.S. (1998)). This means that designers have the freedom to produce physical models of their drawings more frequently, allowing them to check the assembly and function of the design. RP technologies may be divided into the addition material and removal material. The most popular among currently available RP technologies is perhaps stereolitography.

Stereolithography is an additive fabrication process utilizing a vat of liquid UV-curable photopolymer "resin" and a UV laser to build parts a layer at a time (Kalpakjian,S. and Schmid, S. (2000)). On each layer, the laser beam traces a part cross-section pattern on the surface of the liquid resin. Exposure to the UV laser light cures, or, solidifies the pattern traced on the resin and adheres it to the layer below. Stereolithography requires the use of support structures to attach the part to the elevator platform and to prevent certain geometry from not only deflecting due to gravity, but to also accurately hold the 2-D cross sections in place such that they resist lateral pressure from the re-coater blade. Supports are generated automatically during the preparation of 3-D CAD models for use on the stereolithography machine, although they may be manipulated manually. Supports must be removed from the finished product manually; this is not true for all rapid prototyping technologies.

1.2 Problem Statement

Rapid prototyping is a most popular method to produce a product with a short time, low cost and easy to use. There are many types of rapid prototyping system for example stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), direct shell production casting (DSPC), 3D printers and direct fabrication processes. Stereolitography is a type of rapid prototyping system. This is a method and apparatus to produce solid objects by successively "printing" thin layers of the curable material and inkjet printing system will be used. The apparatus that is used to produce a part using this system is E-Darts machine. This machine not always can be function perfectly and requires support structures. Structures that have overhangs and undercuts must have supports that are designed and fabricated together with the main structure. The problem may be occurred on this machine for example on the support system. This support system.

1.3 Objective

Objective of this project are:

- a) To understand the basic concept for rapid prototyping system.
- b) To understand about the operation of resin based 3D printer
- c) To examine the problem occurred on the support system for resin based 3D printer.
- d) To design an improvement on the support system for resin based 3D printer.
- e) To examine the improvement of the resin based 3D machine.

1.4 Scope

This project will be concentrate on resin based 3D printer which can produce prototype with faster compared to the other method. The machine that will be used is E-darts machine. This machine will be operating to produce the specimen. Problem on this machine will be examined. By examine the cause of this problem the solution can be make and improvement on this machine also can be done by crate new design of the support system.

CHAPTER 2 LITERATURE REVIEW

2.1 Rapid Prototyping

2.1.1 What Is The Rapid Prototyping?

In the development of a new product, there is invariably a need to produce a single example or prototype of a designed part or system before the allocation of large amounts of capital to new production facilities or assembly lines (Kalpakjian,S. and Schmid, S. (2000)). The main reasons for this need are that the capital cost is very high and production tooling takes considerable time to prepare. Consequently, a working prototype is needed for design evaluation and troubleshooting before a complex product or system is ready to be produced and marketed.

Rapid prototyping systems have become commercially available; they can offer a significant reduction in the product development life cycle (LIU, S. and WANG, Z. (1998)). Currently, most of the basic research work on rapid prototyping is focused on the development of new materials or techniques for deposition. New application-based research is critically needed to make the rapid prototyping technology more cost-effective, efficient and versatile, particularly during the part design, process planning and support design stages.

2.1.2 Classification of the Rapid Prototyping Processes

Rapid Prototyping is a technology that also can be called as solid free from fabrication. Rapid prototyping process can be divided into three different groups: subtractive, additive and virtual processes. Subtractive process will remove the material from a workpiece. The workpiece is larger than the final part. While the additive process will build up a part by adding the material to produce the final part. Virtual process will use an advanced computer-based visualization technologies. According to Kalpakjian, S. and Schmid, S the computational steps in producing a stereolitography file is shown in figure below.

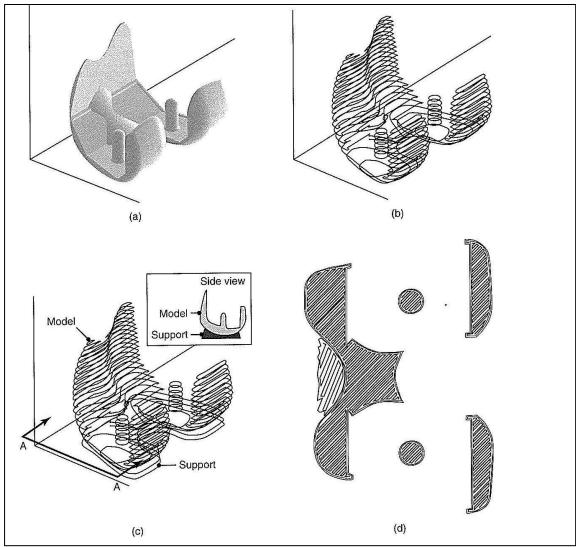


Figure 2.1: The computational steps in producing a stereolitography file.

(a) Three-dimensional description part.

(b) The part is divided into slices (only one in 10 is shown).

(c) Support material is planned.

(d) A set of tool directions is determined to manufacture each slice. Also shown is the extruder path at section A-A from (c) for a fused-deposition-modeling operation.