

14

165- . 170

FAKULTI KEJURUTERAAN ELEKTRIK

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LAPORAN PROJEK

SARJANA MUDA

BEKU 4983

VISION BASED ROAD LINE RECOGNITION

LIU KIT LIM

BEKE 2009

C Universiti Teknikal Malaysia Melaka

"I hereby declared that I have read through this report entitle "Vision Based Road Line Recognition" and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Power Electronic and Drive)"

Signature	:	ADENO
Supervisor's name	:	En. Ahmad Zaki bin Haji Shukor
Date	:	1315/01

i

VISION BASED ROAD LINE RECOGNITION

LIU KIT LIM

A report submitted in partial fulfillment of the requirements for the degree of Bachelor In Electrical Engineering (Power Electronic and Drive)

> Faculty of Electrical Engineering UNIVERSITI TEKNIKAL MALAYSIA MELAKA

> > 2009

declare that this report entitle "*Vision Based Road Line Recognition*" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	en .
Name	:	Liu Kit Lim
Date	:	13 5 2009

To my dearly beloved father and mother

To all my teachers and friends

ACKNOWLEDGEMENT

In submitting this report, I would like to thanks my project supervisor, En. Ahmad Zaki bin Haji Shukor, for his guidance and participation in conducting my project. His knowledge and insights were invaluable in identifying the ways to solve my problems regarding to my project. Without his continued support and interest, this project would not have been same as presented here.

I also would like to thanks En. Sulaiman bin Sabikan and and En. Muhammad Herman bin Jamaluddin as my panels for the Final Year Project (FYP). They shared out their time to attend my Final Year Project (FYP) presentation. Besides, they also give their opinions, advice and provide me good idea and knowledge to complete my Final Year Project (FYP).

I also wish to extend my gratitude to my parents for their support and their understanding and of course to all my friends that help me in this project.

ABSTRACT

The project is titled as "Vision Based Road Line Recognition". This project is to design and develop a system that able to analyze and recognize the left and right boundary lines of the lane and sent the signals to RS232 serial port in hex format according the position of the vehicle during driving. The MATLAB software is used to obtain the image acquisition, image analysis and image processing part. Some of the useful functions in the MATLAB such as Image Acquisition Toolbox and Image Processing Toolbox are use to analyze and recognize the actual road line from the captured images. MATLAB is chosen because it has its own advantages in combining image processing with to real time simulations. The hardware implementation in this project is camera, laptop and RS232 serial port. The response of this system is able to control the car steering and brake system when the vehicle was steered off its lane. The connection of RS232 port to the vehicle controller (PIC) is not in this scope of project. Thus, the Hybrid Hard Drive (HHD) Software Serial Monitor software is used to check and prove the data is sent out from the system to RS232 serial port.

ABSTRAK

Projek ini ialah bertajuk "Vision Based Road Line Recognition". Projek ini adalah untuk mereka dan membangunkan sebuah sistem yang berupaya untuk menganalisis dan mengenali garis-garis sempadan kiri dan kanan jalan dan menghantarkan isyarat dalam hex code ke RS232 mengikut kedudukan kenderaan semasa dipandu. Perisian MATLAB digunakan pada bahagian pengambilalihan imej, analisis imej dan pemprosesan imej. Sesetengah fungsi-fungsi yang amat berguna seperti "Image Acquisition Toolbox" dan "Image Processing Toolbox" digunakan untuk menganalisis dan mengenali garis jalan sebenar yang ditangkap dalam gambar. Perisian MATLAB ini dipilih kerana kelebihannya dalam penggabungan pemprosesan imej dengan masa simulasi-simulasi yang nyata. Perkakasan yang digunakan dalam perlaksanaan projek ini adalah kamera, komputer riba dan mikropengawal. Reaki kepada sistem ini ialah ia berupaya mengawal kemudi kereta dan sistem brek apabila kenderaan tersebut terpesong ke jalan lain. Penyambungan RS232 dengan mikropengawal (PIC) bukan dalam skop projek ini. Oleh itu, perisian "HHD Software Serial Monitor" digunakan untuk memeriksa dan membuktikan data dihantar daripada system ke RS232.

TABLE OF CONTENTS

CHAPTER	TIT	ΓLE	PAGE
	AC	KNOWLEDGEMENT	v
	AB	STRACT	vi
	AB	STRAK	vii
	TA	BLE OF CONTENTS	viii
	LIS	T OF TABLES	xiv
	LIS	T OF FIGURES	XV
1	INT	RODUCTION	1
	1.1	Introduction of Project	1
	1.2	Objective	2
	1.3	Scope of Project	2
	1.4	Problem Statements	3
	1.4	Organization of the Project	4
2	LIT	ERATURE REVIEW	5
	2.1	History	5
	2.2	Principles of Lane Recognition	7
	2.3	Existing Vision Based Road Line Recognition	8
		applications	
		2.3.1 Universiti Teknikal Malaysia Melaka	8

TABLE OF CONTENTS

CHAPTER TITLE

1

2

PAGE

ACKNOWLEDGEMENT	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xiv
LIST OF FIGURES	XV

INTI	RODUCTION	1
1.1	Introduction of Project	1
1.2	Objective	2
1.3	Scope of Project	2
1.4	Problem Statements	3
1.4	Organization of the Project	4

LITERATURE REVIEW 5 2.1 History 5 2.2 Principles of Lane Recognition 7 2.3 Existing Vision Based Road Line Recognition 8 applications 2.3.1 Lane Recognition System for Vehicle 8 2.3.1.1 Description of the System Structure 9 2.3.1.2 White Line Recognition 10 2.3.2 Vision Method of Detecting Lane Boundaries 10

and Obstacles

3

PAGE

	2.3.2.1	The Embodiments of the Invention	11
	2.3.2.2	Description of the Preferred	
		Embodiment	12
2.3.3	Video Pr	rocessing Application	12
	2.3.3.1	Building the System Model	13
	2.3.3.2	Lane Detection and Visualization	

TH	EORY	AND BA	CKGROUND	16
3.1	MATI	LAB		16
	3.1.1	What is	MATLAB?	16
	3.1.2	The MA	ATLAB System	17
	3.1.3	Basic F	eatures of MATLAB	18
	3.1.4	MATLA	AB Interface	19
	3.1.5	Image A	Acquisition Toolbox	20
		3.1.5.1	Key features	21
		3.1.5.2	Working with Image Acquisition	21
			Toolbox	
	3.1.6	Image P	Processing Toolbox	22
		3.1.6.1	Key Features	22
		3.1.6.2	Analyzing Images	23
	3.1.7	Video a	nd Image Processing Blockset	24
		3.1.7.1	Key Features	25
		3.1.7.2	Modeling and Simulating Video	26
			and Imaging Systems	
		3.1.7.3	Generating and Optimizing C Code	26
		3.1.7.4	Filtering, Transforms, and	26
			Geometric Primitives	
		3.1.7.5	Colour Operations	27
	3.1.8	Neural 1	Network Toolbox	27
		3.1.8.1	Key Features	28

RS232

3.5

4

4.6.2.6 Previewing video

ME	гнора	DLOGY	33
4.1		uction	33
4.2			
		t Implementation Flow Chart	34
4.3	·	et Planning	35
4.4	Projec	et Description	36
4.5	Hardv	vare	38
	4.5.1	Image Acquisition Device	38
		4.5.1.1 Logitech web cam	40
	4.5.2	Processor	41
	4.5.3	RS232 Serial Port	41
	4.5.4	USB to RS232 Converter (Db9)	42
	4.5.5	DB9 Loopback Connector	43
	4.5.6	Car Controller	44
4.6	Softw	are Development	44
	4.6.1	Flowchart of the Program	44
	4.6.2	Basic Instructions Working with Images	46
		4.6.2.1 Reading an Image	46
		4.6.2.2 Displaying an Image	47
		4.6.2.3 Observe and understand	48
		4.6.2.4 Generating an image	48
		4.6.2.5 Working with Image Acquisition	50
		Toolbox	

Hough transform 3.2 Introduction 3.2.1 3.2.2 Theory of Hough Transform Hough Lines 3.3 Kalman Filter 3.4

28

28

29

31

31

32

52

PAGE

	4.6.2.7	Capturing and storing images	53
4.6.3	Creating	g a Model	55
	4.6.3.1	Opening the Simulink Library	55
		Browser	
	4.6.3.2	Opening a Model	56
	4.6.3.3	Adding Block to the Model	56
	4.6.3.4	Moving Blocks in the Model	59
		Window	
	4.6.3.5	Connecting Blocks in the Model	60
		Window	
	4.6.3.6	Drawing Lines between Blocks	60
	4.6.3.7	Changing the Orientation of a	61
		Block	
	4.6.3.8	Saving the Model	62
4.6.4	Creating	g a Subsystem by Grouping Existing	63
	Blocks		
4.6.5	Blocks U	Used in this Project	65
	4.6.5.1	From Video Device	65
	4.6.5.2	Color Space Conversion	65
	4.6.5.3	Submatrix	66
	4.6.5.4	Outport	67
	4.6.5.5	2-D FIR Filter	67
	4.6.5.6	Saturation	68
	4.6.5.7	Autothreshold	68
	4.6.5.8	Hough Transform	69
	4.6.5.9	Find Local Maxima	70
	4.6.5.10	Variable Selector	71
	4.6.5.11	Matrix Concatenate, Vector	71
		Concatenate	
	4.6.5.12	Kalman Filter	72
	4.6.5.13	Hough Lines	72

5

4.6.5.14	Switch	74
4.6.5.15	Draw Shapes	75
4.6.5.16	Insert Text	76
4.6.5.17	To Video Display	77
4.6.5.18	Serial Send	78
4.6.5.19	Serial Configuration	78

RES	ULTS A	ND DIS	SCUSSI	ION				79
5.1	Vision	Based	Road	Line	Recogn	ition	(VBRLR)	79
		Model						
	5.1.1	Input Su	ıbsyster	n				80
	5.1.2	Lane De	etection	Subs	ystem			81
		5.1.2.1	Peak I	Detect	tion Subs	system		82
	5.1.3	Lane Tr	acking	Subsy	stem			83
	5.1.4	Departu	re Warı	ning S	ubsyster	n		84
		5.1.4.1	Left	and	Right	Lanes	s Finder	85
			Subsy	stem				
		5.1.4.2	Depar	ture D	Detection	Subsy	vstem	86
	5.1.5	Output S	Subsyst	em				87
5.2	Output	and the l	Result o	of the	VBRLR	Syster	n	88
	5.2.1	Window	Result	S				88
		5.2.1.1	Analy	sis of	the Win	dow R	esults	90
	5.2.2	Serial Po	ort Mor	nitor R	lesult			91
		5.2.2.1	Analy	sis of	the Seri	al Por	t Monitor	92
			Result	t				

6	CONCLUSION,	SUGGESTION	AND	FUTURE	93
	WORK				

6.1 Conclusion 93

PAGE

6.2	Suggestion and Future Work
REF	ERENCE
APP	ENDICES

94

95 96

LIST OF TABLES

TABLE TITLE

PAGE

4.1	Grant Chart of Project Planning	35
4.2	Data of the 2-D FIR Filter block port	68
4.3	Data of the Autothreshold block port	69
4.4	Data of the Hough Transform block port	70
4.5	Data of the Hough Lines block port	73
4.6	Data of the Draw Shapes block port	75

LIST OF FIGURES

FIGURE TITLE

2.1	Block diagram showing the structure of an embodiment in	9
	accordance with the present invention.	
2.2	Block diagram of a computer vision system for carrying out	11
	the method of the invention	
2.3	Lane-detection model	13
2.4	Floating-point model: the Lane Marker Detection and	13
	Tracking subsystem.	
2.5	Typical image in initial phase	14
2.6	Lane tracking simulation results, with a trapezoidal figure	15
	marking the lanes in the video image.	
2.7	Proposed algorithm for lane boundaries detection and	15
	tracking	
3.1	Command Window	19
3.2	Workspace	19
3.3	Command History	20
3.4	Theta-rho line space	31
3.5	RS-232 DB	32
4.1	Project Implementation Flow Chart	34
4.2	Block Diagram of Overall Project	36
4.3	Illustration to show a state where the camera is mounted	38
4.4	CCD camera and USB webcam	39
4.5	High performance analogue CCTV camera	39
4.6	Logitech Webcam	40
4.7	Laptop	41
4.8	Pin of serial port	41
4.9	USB to RS232 converter (Db9) cable	42

4.11	DB9 Loopback Connector on Female side	43
4.12	Loopback Connector Built	43
4.13	Flowchart of the Program	45
4.14	Command window	46
4.15	Image displayed on Figure Window	47
4.16	Showing the devices available	51
4.17	The information of the device	51
4.18	The detail information of the acquisition parameters	52
4.19	Window pop-up display what the camera is capturing	53
4.20	Simulink Library Browser	55
4.21	New Empty Model	56
4.22	From Video Device block in the Simulink Library Browser	57
4.23	Model Window	57
4.24	Blocks in the Model	59
4.25	Input and Output ports	60
4.26	Changing the Orientation of a Block	61
4.27	The complete VBRLR Input model	62
4.28	Input Model Window blocks	63
4.29	Input subsystem	64
4.30	From Video Device block	65
4.31	Color Space Conversion block	65
4.32	Submatrix block	66
4.33	Outport block	67
4.34	2-D FIR Filter block	67
4.35	Saturation block	68
4.36	Autothreshold block	68
4.37	Hough Transform block	69
4.38	Find Local Maxima	70
4.39	Select rho and Select theta block	71
4.40	Matrix Concatenate, Vector Concatenate block	71
4.41	Kalman Filter block	72

XV11

DA	OD
PA	GE

4.42	Hough Lines block	72
4.43	Reference Image	73
4.44	Input and Output of Hough Lines block	73
4.45	Switch block	74
4.46	Draw Shapes block	75
4.47	Insert Text block	76
4.48	To Video Display block	77
4.49	Serial Send block	78
4.50	Serial Configuration block	78
5.1	Vision Based Road Line Recognition Model	79
5.2	Input Subsystem	80
5.3	Lane Detection Subsystem	81
5.4	Peak Detection Subsystem	82
5.5	Lane Tracking Subsystem	83
5.6	Departure Warning Subsystem	84
5.7	Left and Right Lanes Finder Subsystem	85
5.8	Departure Detection Subsystem	86
5.9	Output Subsystem	87
5.10	Normal driving	88
5.11	Left lane departure	89
5.12	Right lane departure	89
5.13	Serial Port Monitor when Port opened	91
5.14	Serial Port Monitor when Port closed	91

LIST OF APPENDICES

APPENDIXTITLEPAGEAResit of webcam96BJournals related to this project97

В	Journals related to this project	97
С	MATLAB Toolbox	106

CHAPTER 1

INTRODUCTION

1.1 Introduction of Project

According to the Road Safety Department in Ministry of Transport Malaysia, a lot of serious accidents happened in highway involved unintended lane or road departure. Vehicle straying out of lane are because driver lack of concentration and sleepy during long distance driving.

To reduce the likelihood of a vehicle straying out of lane, my project, "Vision Based Road Line Recognition" is developed. The purpose of this project is to develop a system that able to analyze and recognize the left and right boundary lines of the lane, monitor the position of the vehicle within its lane and notifies the driver and sending the signal via RS-232 to the car controller (microcontroller) if the vehicle are moving across a lane or move out of its lane. This project is divided into two parts: hardware implementation and software part.

In the hardware part, a camera will be installed in a vehicle to capture the images of the road surface in front of the vehicle from the driver view. The video information about lane markings and road conditions will be transmitted from camera to a microprocessor unit (laptop) installed on the vehicle to proceed with the image analysis and recognition by the specific software. So if a distracted driver looks away from the road and starts to veer out of their lane, the car will recognize this as an unintended lane departure. The response of the system can be alert the driver and control the car steering back to the lane by using microcontroller connected by RS232.

In the software part, the software MATLAB is used to obtain the image acquisition, image analysis and image processing part. Some of the useful functions in the MATLAB such as Image Acquisition Toolbox, Video and Image Processing Toolbox were used to analyze and recognize the actual road line from the captured images. Indeed, Hough Transform, Hough Lines and Kalman Filter blocks were used to create line detection and tracking algorithm. This software is chosen because it has its own advantages in combining image processing with real time simulations.

1.2 Objectives

The objectives of this project were:

- To design and develop a "Vision Based Road Line Recognition (VBRLR)" system using MATLAB.
- ii) To detects and tracks road lane markers of actual road in a video sequence using camera installed in a vehicle and notify the driver if they are moving across a lane to provide more safety road line recognition system to the driver.
- iii) To interface between MATLAB with the Image Acquisition Device (camera); MATLAB with the RS232 (can be connected with microcontroller as car controller).

1.3 Scope of Project

- To design and develop a Vision Based Road Line Recognition system to recognize the left and right boundary lines of the lane using Video and Image Processing Toolbox (Hough Transform, Hough Lines and Kalman Filter blocks) of MATLAB.
- To interface between the Image Acquisition Device (camera) and MATLAB to get the input.
- iii) To interface between MATLAB and PC's serial port (RS232).
- iv) To give response to the microcontroller by sending out the output signal in type of hexadecimal codes to the RS232 regarding the position of the vehicle on the lane during driving. The part of microcontroller as a car controller to control the car steering back to the lane will be carry on by other students on next semester.

1.4 Problem Statements

Every year, many serious accidents happened because of reckless driving. The main factor for the vehicle straying out of lane is due to the lack of concentration during long time driving. Thus, it is a necessity to develop a system to reduce the likelihood of a vehicle straying out of lane.

In the present world, there are many types and methods of road line recognition systems that have been developed by the automotive engineers. The designs in the market almost are based on the particular processors or devices and software. Furthermore, these particular processors or devices might be costly and difficult to be re-programmed.

One of the objectives of this project is to design and develop the system to analyze the image acquired as input. Acquiring an image in real time from a camera is not a problem but the major problem is to ensure the system can analyze and recognize the image acquired by the camera and give a response as output to the driver in real time.

To overcome these problems, this project is to develop the Vision Based Road Line Recognition by using MATLAB Simulink model. Just a laptop is used as the processing unit in this project. This system is able to detect and track road lane markers in a video sequence and notify the driver if they are moving across a lane in real time. Besides, the signal also can be sending out via RS232 in hexadecimal codes to microcontroller for steering control. Hereby, on the terms of low cost effective and easy to reprogram this system is developed by using MATLAB.

1.5 Organization of the Project

The report will be conducted in few chapters and each has stated as below:

i) Chapter 1: Introduction

This part will simply introduce about the project. This chapter will contains introduction, objectives, scope of project and problem statement.

ii) Chapter 2: Literature review

This part will explain the study that been done before and some analysis will be stated at the second part which are relevant to the project. Every facts and information that is found from journals or other references will be mentioned in this chapter. Besides that, the techniques will be compared to get the best method for this project.

iii) Chapter 3: Theory and background

This chapter will state the clear and complete theory related to this project.

iv) Chapter 4: Methodology

This part will show the project methodology used in this project such as acquisition image, analyze image, processing image and steering control. All these methodologies will be described detail in this chapter.

v) Chapter 5: Results and Discussion

This part will present the result and provide a general discussion on the results of the project, stressing the significance and implications of the findings of the project undertaken. Contributions of project findings to the field of study should be highlighted.

vi) Chapter 6: Conclusion and Recommendation

This chapter contains a brief summary of the entire work, including methods, results and major conclusions or recommendations arising from the work. Weaknesses, shortcomings and strengths of the project are presented. Suggestions for future work may also be included together with contributions of project.