LOG PERIODIC ANTENNA DESIGN

SITI NORHIDAYAH BINTI HJ. MOHAMED

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Telecommunication Electronics Engineering) With Honours

> Faculty of Elctronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > May 2008

C Universiti Teknikal Malaysia Melaka

Tajuk Projek : LOG PER Sesi Pengajian : 2007/200	NIVERSTI TEKNIKAL MALAYSIA MELAKA JRUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II RIODIC ANTENNA DESIGN 8
Saya	SITI NORHIDAYAH BINTI HJ. MOHAMED
 mengaku membenarkan Laporan syarat kegunaan seperti berikut: 1. Laporan adalah hakmilik Univ. 2. Perpustakaan dibenarkan mem 3. Perpustakaan dibenarkan mem pengajian tinggi. 4. Sila tandakan (√): 	a Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat- ersiti Teknikal Malaysia Melaka. buat salinan untuk tujuan pengajian sahaja. buat salinan laporan ini sebagai bahan pertukaran antara institusi
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PENU) Alamat Tetap: NO. 243-A RPT KAMPU CHENULANG, 18000 K KELANTAN. Tarikh: 02 MAY 2009	LIS) (COP DAN TANDATANGAN PENYELIA) UNG CUALA KRAI, Tarikh: 02 MAY 2008
Tarikn: 02 MAY 2008	Tarikii: 02 MAT 2008

C Universiti Teknikal Malaysia Melaka

"I hereby declare that this report is the results of my own work except for quotes as cited in the references."

Signature	:
Author	: SITI NORHIDAYAH BINTI HJ. MOHAMED
Date	: 02 MAY 2008

" I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Electronics Engineering) With Honours"

Signature	:
Supervisor's Name	: MOHAMAD ZOINOL ABIDIN BIN ABD. AZIZ
Date	: 02 MAY 2008

Specially for my loving umi, abah and to all my sisters and brother.

ACKNOWLEGEMENT

Alhamdulillah, I would like to give fully thanks to Allah S.W.T for provide me an ability and strength in doing this project and this thesis writing successfully. I would like to express my appreciation to my supervisor Mr Mohamad Zoinol Abidin bin Abd. Aziz who give me a fully supported and spirit to me in doing this project for finishing this project successfully. Lastly, to all my friends who give me a support in doing this project. His wisdom, insight and knowledge, the social grace with witch he delivers his idea are a constant inspiration. He also guided me so that I will continue to be in the correct path during the development of this thesis.

Besides, I would like to thank my beloved family for their encouragement and never ending support. Their support and lovely companionship is another important source of strength for me. They spend all their time and effort on me. With their devoted love and sacrifices, none of this would have been possible.

I wish to thank my friends and all for their immeasurable concern and support to me. They are provided me a motivating during the discussions that we had. Without their support and assistance the completion that I had now is unfeasible.

Lastly, I would like to acknowledgement every individual who give me a helping hand in order to achieve this accomplishment.

ABSTRACT

This project presents the design of microstrip Log Periodic Antenna. The antenna was designed at frequency between 2.0GHz and 2.4GHz for Wireless Area Local Network (WLAN) and International Mobile Telecommunication 2000 (IMT2000). The main problem of microstrip antenna is the narrowband characteristic up to 3% of bandwidth. The objective of this project is enhance the bandwidth of microstrip antenna. The constructing of this antenna including design, simulate and fabricate a log periodic antenna for broadband application. First, the single element for each frequency have been designed. Then, the three elements, five elements and seven elements have been designed with scaled by scaling factor of 1.05, 1.03 and 1.02. After that, the design antenna have been simulated by using Microwave Office software (AWR 2006) to performs the simulation of return loss, reflection coefficient, bandwidth and gain. The experimental validation to verify the performance of the designed antenna was done using the Advantest R3767 CG Network Analyzer and Spectrum Analyzer. The properties of antennas such as bandwidth, gain and half power beamwidth have been investigated and compared between simulation and measurements. The design provided the bandwidth better than -20.22% in the working bandwidth of five elements. Besides, the radiation pattern of three elements shows the HPBW at 63° for H-co polarization. Then, the five elements show the HPBW is 88° at frequency 2.31GHz for H-co polarization.

ABSTRAK

Projek ini bertujuan membina sebuah antena berkala log pada frekuensi 2.0 GHz dan 2.4GHz untuk Wireless Area Local Network (WLAN) dan International Mobile Telecommunication 2000 (IMT2000). Masalah utama antenna mikrostrip ialah lebar jalur sempit dengan nilai 3%. Objektif utama projek ini adalah untuk membina antena yang dapat meningkatkan lebar jalur antena mikrostrip. Antena ini dibina dengan merekabentuk, simulasi and fabrikasi antenna berkala log untuk penggunaan lebar luas. Pertama, setiap elemen tunggal pada setiap frekuensi direka. Kemudian, tiga elemen, lima elemen dan tujuh elemen direka dengan penskalaan faktor 1.05, 1.03 dan 1.02. Kemudian, antenna yang direka disimulasi dengan menggunakan perisian Microwave Office(AWR2006) menghasilkan return loss, reflection coefficient, lebar jalur, gandaan. Eksperimen yang dijalankan untuk menilai prestasi antena ini dijalankan melalui Rangkaian Penganalisis dan Spektrum Penganalisis. Keputusan pengukuran antena berkala log adalah sepadan dengan keputusan simulasi seperti lebar jalur luas, gain yang tinggi adalah dijangka untuk penggunaan antenna dalam komunikasi mobil. Ia menyediakan penyesuaian yang lebih baik pada -20.22% dalam frekeunsi lebar jalur bekerja.

TABLE OF CONTENTS

CHAPTER TITLE

PAGES

TITLE OF PROJECT	i
PROJECT APPROVAL	ii
DECLARATON I	iii
DECLARATON II	iv
DEDICATION	V
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
CONTENTS	ix
LIST OF TABLE	xii
LIST OF FIGURE	xiii
ABBREVIATION	xvi
LIST OF APPENDIX	xviii

Ι

INTRODUCTION

1.1	Introduction	1
1.2	Scope of Projects	2
1.3	Problem Statement	3
1.4	Projects Objective	3
1.5	Project Methodology	4

II LITERATURE REVIEW

2.1	Antennas Concept		6
2.2	Parameters of Antenna Definition		7
	2.2.1	Radiation Pattern	7
	2.2.2	Gain	8
	2.2.3	Bandwidth	9
	2.2.4	Input impedance	9
	2.2.5	Polarization	10
	2.2.6	Directivity	10
2.3	3 Microstrip Antenna		11
	2.3.1	Basic Characteristic	12
	2.3.2	Feeding Methods	13
	2.3.3	Transmission-Line Model	15
2.4	Log Periodic Antenna		

III MICROSTRIP LOG PERIODIC ANTENNA DESIGN

3.1	Introduction		24
3.2	Design Consideration		24
	3.2.1	Single Element design	25
	3.2.2	A single element circuit by using inset feed	27
		feeder	
	3.2.3	Design a Log Periodic Antenna	28
3.3	Log P	eriodic Antenna Simulation	32
3.4	Fabrication Process		41
3.5	Testing and Measuring		44

🔘 Universiti Teknikal Malaysia Melaka

ANALYSIS AND SIMULATION

IV

4.1	Introd	Introduction		47
4.2 Simu		ation R	esult	47
	4.2.1	Single	e Element Antenna	48
		(a)	The Optimized Result During Simulation	49
		(b)	Measurement Result	52
	4.2.2	Three	Elements of Log Periodic Antenna	55
		(a)	The Analyzed Result During Simulation	56
		(b)	Measurement Result	62
	4.2.3	Five F	Elements of Log Periodic Antenna	64
		(a)	The Optimized Result During Simulation	65
		(b)	Measurement Result	73

V CONCLUSION AND RECOMMENDATION

5.1	Conclusion	76
5.2	Recommendation	77

REFERENCES	78

APPENDIX A	80

xi

LIST OF TABLE

NO. TITLE

PAGES

Advantages and disadvantages of patch antenna.	11
The performance of the array	22
A qualitative comparison with the efficiencies	22
Calculation of Design Parameter Scaled With 1.05	29
Calculation of Design Parameter Scaled With 1.03	30
Calculation of Design Parameter Scaled With 1.02	31
The analyses y_0 of result for single element	49
The Changing of d_{mm1}	57
The Changing of d_{mm2}	58
The Changing of d_{mm3}	59
The Changing of d_{mm1}	66
The Changing of d_{mm2}	67
The Changing of d_{mm3}	69
The Changing of d_{mm4}	70
The Changing of d_{mm5}	72
Comparison of all threes design in simulation and measurement	75
	Advantages and disadvantages of patch antenna. The performance of the array A qualitative comparison with the efficiencies Calculation of Design Parameter Scaled With 1.05 Calculation of Design Parameter Scaled With 1.02 Calculation of Design Parameter Scaled With 1.02 The analyses y_0 of result for single element The Changing of d_{nm1} The Changing of d_{nm2} The Changing of d_{nm2} The Changing of d_{nm2} The Changing of d_{nm2} The Changing of d_{nm3} The Changing of d_{nm3} Changing Changing Changin

LIST OF FIGURE

NO. TITLE

PAGES

1.1	Project Methodology	5
2.1	Typical radiation pattern of a simple square patch	8
2.2	Microstrip Antenna	12
2.3	Representative Shapes of Microstrip Patch	13
2.4	Typical feeds for microstrip antennas	14
2.5	Transmission-line model of microstrip antenna	15
2.6	Planar trapezoidal toothed Log Periodic Antenna	17
2.7	Microstrip Log Periodic Antenna	18
2.8	(a): Log Periodic Antenna Array	19
	(b): The Schematic View of Microstrip Radiators	19
2.9	Typical Input Impedance Variation of Log Periodic Antenna	20
2.10	Patch detail of log periodic patch array	21
2.11	Power Gain and Input VSWR against Frequency	21
2.12	H-plane radiation patterns at 8.0, 9.25 and 10.75GHz	22
3.1	Square Microstrip with Inset Feed	25
3.2	Three dimensional view of the single element	27
3.3	EM Structure Design of Single Element	28
3.4	The MWO Design Environment	32
3.5	Creating a new Schematic	33
3.6	Selecting microstrip components from Elements	34
3.7	Common components used in project	35

3.8	Schematic design a single element Log Periodic Antenna	36
3.9	Layout of single element of Log Periodic Antenna	36
3.10	Schematic design three elements of Log Periodic Antenna	37
3.11	Layout of three elements of Log Periodic Antenna	37
3.12	Schematic design of five elements of Log Periodic Antenna	38
3.13	Layout of five elements Log Periodic Antenna	38
3.14	Adding graph	39
3.15	Adding measurements in graph	39
3.16	Setting project options	40
3.17	Analyzing Schematic	41
3.18	Ultra-violet Ray unit	42
3.19	The Etching Tank	42
3.20	Three designs of Log Periodic Antenna	44
3.21	The Advantest R3767 CG Network Analyzer	45
3.22	Log Periodic Antenna measurement set up	46
4.1	The schematic circuit design	48
4.2	The Layout of the Single patch	49
4.3	Return lo Return Loss from simulation for single element	50
4.4	Return Loss from simulation for single element antenna	51
	at 2.0GHz	
4.5	The Radiation Pattern of single element antenna	52
4.6	Measurement Result for return loss	53
4.7	Radiation Pattern for single element	54
4.8	The Schematic circuit design for three elements Log Periodic	55
	Antenna	
4.9	The Layout for three elements Log Periodic Antenna	56
4.10	Return Loss versus frequency for when changing of d_{mm1}	57
4.11	Graph Return Loss versus Frequency	58
4.12	Return Loss versus Frequency	59
4.13	Simulation result for three elements Log Periodic Antenna	60
4.14	The Radiation Pattern of three elements antenna	61

4.15	Approximate Measurement Result For Return Loss Response	62
4.16	Radiation Pattern for three elements	63
4.17	The schematic of five element log periodic antenna	64
4.18	The layout of five element log periodic antenna	64
4.19	Simulation result three elements Log Periodic Antenna	65
4.20	Return loss versus frequency	67
4.21	Return loss versus frequency	68
4.22	Return loss versus frequency	69
4.23	Return loss versus frequency	71
4.24	Return loss versus frequency	72
4.25	Result for Return Loss Response	73
4.26	Comparison of all threes measurement response	74

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

W	Width
h	Dielectric Thickness
t	Copper Thickness
L	Length
Leff	Effective Length of the Patch
f_r	Resonance Frequency
уо	Feed Line
λ	Wavelength
\mathcal{E}_r	Dielectric Constant
\mathcal{E}_{o}	Permittivity of Free Space
μ_o	Permeability of Free Space
Zo	Load Impedance
ΔL	Dimensions of the patch along its length
w/h	Width-to-height ratio
а	Radius
ℓ	Inset Feed
Q	Antenna Quality Factor
dB	Decibel
dBi	Decibel Isotropic
RL	Return Loss
G	Gain
Pr	Radiated Power
Pi	Input Power

Rin	Real Part
Xin	Imaginary Part
Cc	Coupling Capacitance
S	Distance
MPA	Microstrip Patch Antenna
EM	Electromagnetic
РСМА	Proximity Coupled Microstrip Antenna
IEEE	Institute of Electrical and Electronics Enginerring
WLAN	Wireless Local Area Network
MWO	Microwave Office
FR4	Frame Resistance 4
ξ	Tangent Loss
MMIC	Monolithic Microwave Integrated Circuit
TEM	Transverse Electric-Magnetic
TX line	Transmission Line
UI	User Interface
UV	Ultra Violet
EM	Electromagnetic
S_{11}	Input Port 1 to Output Port 1
VSWR	Voltage Standing Wave Ratio

LIST OF APPENDIX

APPENDIX A1	80
APPENDIX A2	81
APPENDIX A3	82

CHAPTER 1

INTRODUCTION

1.1 Introduction

This report documents the design, simulate, fabricate and testing a log periodic antenna at frequency 2.4GHz for broadband application and at frequency 2.0GHz for IMT 2000 (International Mobile Telecommunication) band using Microwave Office. IMT 2000 consist two types that is core Frequency Band and Extension Band. Further, for IMT 2000-Core Frequency Band is operating in the FDD mode in the bands 1920-1980MHz paired with 2110-2170MHz with the mobile station transmitting [1].

The design is based on the log periodic antenna theory. The design guidelines as well as simulated, fabricated and measured results are represented. Log periodic technique is considered to be useful for improving the characteristics of a microstrip antenna which is narrow band in natural, without giving up the advantages of low profile and light weight.

At the end of this project, the objectives that will achieved. The expected result in this project is producing a log periodic antenna microstrip antenna operates at frequency 2.4GHz for WLAN and at frequency 2.0GHz for IMT2000. The narrowband characteristic up to 3% of bandwidth can enhance using log periodic antenna technique. It is also provided the matching better than -10dB in the working bandwidth is ability to operate over wide frequency range and maximum gain at centre frequency is 4.5dB.

The radiating elements are coax-fed and arranged on one side of the common feed line behind the ground plane. This arrangement necessarily decreases the element spacing and increases the mutual coupling between elements. The coupling effect has acted to fill up the inactive frequency regions. Larger coupling between elements due to the necessarily dense arrangement enables obtaining wide band frequency characteristics. An example five element cases proves that present this technique is useful, giving gain of 6 to 10dBi over a bandwidth of about 20% [2].

1.2 Scope Of Projects

This project is divided to several phase. The first phase is to design the log periodic microstrip antenna at frequency 2.4GHz for WLAN and frequency 2.0GHz for IMT2000. A log periodic structure consists of the metal strip which is edges is specified by the angle $\alpha/2$ [3]. The second phase is simulating the log periodic antenna using Microwave Office. Before this, the single element and multiple elements microstrip antenna for three, five and seven elements is design to produce a log periodic antenna structure. The radiating element is a square or rectangular of patch antenna. The input impedance of the patch is adjusted to the inset feed and matched at 50 Ω impedance with quarter wavelength [4]. The third phase of my project is fabricating the log periodic antenna on FR4 board by using chemical etching technique. The fourth phase is testing and measuring the log periodic antenna by gain comparable to dipole. This phase is the last task for determine whether this project is successful or not.

1.3 Problem Statement

The most limitation of microstrip antenna technology is narrow bandwidth of basic element, lower gain and low power handling capability. Microstrip has narrow bandwidth, typically 1-5% which is the major limiting factor for widespread application of antenna [5]. The bandwidth of an antenna expresses its ability to operate over a wide frequency range. It is often defined as the range over which the power gain is maintained to within 3dB of its maximum value or the range over which the VSWR is no greater than 2:1, whichever is smaller [6].

Besides that, the log periodic antenna designs which have a good size where the values of width (W) are approximately same with the value of length (L). So, the antenna design with be low profile and fulfill the weight characteristics [5]

1.4 Projects Objective

The objective of this project is to design, simulate and fabricate a log periodic antenna at frequency at 2.4GHz for broadband application. The antenna is design for single, three and five elements array of log periodic antenna at the certain frequency has been chosen.

Otherwise, this project is to analyze the characteristic impedance, return loss, VSWR and tangent loss of feed network. Besides that, this project provided design of broadband antenna structure which used the characteristic are vary periodically with the logarithm of the frequency are produced.

1.5 **Project Methodology**

The project methodology was beginning when the information of Log Periodic Antenna is gathering via IEEE Explorer, journals and references books and so on. All the related information that can be used in this project must be record. At the same time, the characteristic of log periodic antenna design are available which provide omni directional, bidirectional or unidirectional radiation patterns and either linear or circular polarization are recognized [7].

Besides, the Microwave Office software (AWR 2006) has to study. This software used for design and simulate the circuit of log periodic antenna. Before design the circuit, we need to calculate the parameter of log periodic follow the related formula such as return loss, reflection coefficient and so on. The simulation still be analyzing to checking wheatear the simulation is achieved the specification and matching. After the specification the antenna parameter and impedance matching is obtained. The periodic τ as 1.05, 1.03 and 1.02 has been chosen. The substrate also used is FR4 with dielectric constant of 4.7, height of 1.6mm and loss tangent of 0.019 based on data sheet specification. Additional, the components will be choosing including the SMA connector PCB Mounting Socket.

After that, the Log Periodic Antenna circuit to get substrate thickness, width (W), patch length (L), spacing between m+h and (m+1)th element for scaling factor τ is designed and redesign until get the best optimization analysis. All planning of this project are monitoring by supervisor. The fully guided, support for doing this project in successfully progress is appreciated.

Next, the Log Periodic Antenna is fabricated on FR4 board by using chemical etching technique. Lastly, the Log Periodic Antenna circuit by using gain comparable to dipole is tested and measured. The result is verified with successfully.

Figure 1.1: Project Methodology

C Universiti Teknikal Malaysia Melaka

CHAPTER II

LITERATURE REVIEW

2.1 Antennas Concept

An antenna is defined by Webster's Dictionary as "a usually metallic device (as a rod or wire) for radiating or receiving radio waves." The IEEE Standard Definitions of Terms for Antennas (IEEE Std 145-1983) defines the antenna or aerial as a means for radiating or receiving radio waves [8]. The purpose of and antenna is to transmit or receive radio frequency energy. The function of an antenna when used at a transmitter is to convert the radiated wave into useful radio frequency energy for the receiver [3].

In other words the antenna is the transitional structures between free-space and guiding device, as shown in Figure the guiding device or transmission line may take the form of a coaxial lie or a waveguide and it is used to transport electromagnetic energy from transmitting source to the antenna or from the antenna to the receiver. In the previous cases, we have a transmitting antenna and in the latter a receiving antenna.

In addition to receiving or transmitting energy, an antenna in an advanced wireless system usually required to optimize or accentuate the radiation energy in some directions and suppress it in others. Hence, the antenna must also serve as a directional