MICROSTRIP LEAKY WAVE ANTENNA DESIGN FOR WLAN APPLICATION

NURLIYANA BT ABD MALIK

This report is submitted in partial fulfillment of requirements for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours

Faculty of Electronic Engineering and Computer Engineering Universiti Teknikal Malaysia Melaka

April 2009

C Universiti Teknikal Malaysia Melaka

2

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature	:
Author	NURLIYANA BT ABD MALIK
Date	.6 TH APRIL 2009

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours."

Signature	:
Supervisor's Name	· MOHAMAD ZOINOL ABIDIN BIN ABD AZIZ
Date	. 6 TH APRIL 2009

DEDICATION

То

My Beloved Parents, En Abd Malik Hj Mahfudz & Pn Sabariah Ismail, My Brother and Sister, My kind hearted supervisor, Mr Mohamad Zoinol Abidin Abd Aziz And all my dearest friends.

ACKNOWLEDGEMENT

First of all, I would like to thank to Allah the Almighty who always beside me guiding and giving me blessing to finish my Project Sarjana Muda II successfully.

My sincere appreciation and gratitude are dedicated to my honorable supervisor, En Mohamad Zoinol Abidin Bin Abd Aziz for his encouragement, guidance and critics. Without his continued support and interest, this thesis would not have been the same as presentd here.

I would like to extend my sincere appreciation to all my dearest friends especially Shela, Hajar, Kak Iwan and Wani for their friendship, encouragement and always being beside me in every condition. Not to forget, all students under the same supervisor thank you for sharing the similar knowledge.

Last but not least, I would like to thank my beloved family especially my loving parents, En Abd Malik Mahfudz and Pn Sabariah Ismail. Their loves, supports and prayers have given me the strength to finish what I have started. Finally, to everybody that has been involved in my project directly or indirectly, thank you very much.

ABSTRACT

This project presents an overview of design of Microstrip Leaky-Wave Antenna for Wireless Local Area Network Application. WLAN and wireless information network requires low-cost, low profiles and efficiency smart antenna. Microstrip leaky-wave antenna (MLWA) can be a candidate for its simple construction, low profiles, easy to match and frequency-scanning ability. The circuit was designed by using CST Microwave Studio and the circuit was simulated to obtain the return loss, radiation pattern, gain, directivity, bandwidth, FNBW and HPBW. Design process of MLWA starts with designing the single patch and followed by designing the array antenna by varied the number of elements, N and value of phase different, β . Array Factor equation is used to plot the MLWA radiation pattern and the plot was compared with the simulation result. Minimum resonant frequency occurred when the number of elements is greater. When the number of β increase, the value for directivity and bandwidth will slightly increase. As the number of elements is increase, the multiple beam appear on the radiation pattern will also increase. FR4 photo-resist board is used for the fabrication of the selected design antenna by using chemical etching technique. Finally, the fabricated antenna was measured by using network analyzer and antenna trainer to measure the return loss, directivity, bandwidth, FNBW, HPBW and radiation pattern. The measurement result was compared with the simulation result.

ABSTRAK

Projek ini berkenaan dengan rekaan antena jalur-mikro kebocoran gelombang (MLWA) untuk aplikasi WLAN. Aplikasi WLAN ini memerlukan antena yang mempunyai ciri-ciri seperti kos pembinaan yang rendah serta mempunyai kecekapan yg tinggi. MLWA boleh dijadikan sebagai antenna yang terbaik untuk digunakan kerana ia mudah dari segi pembinaan serta mempunyai keupayaan pengesanan frekuensi yang tinggi. Penyediaan dan simulasi litar bagi antena ini akan menggunakan perisian CST Microwave Studio dan litar ini di simulasi untuk mendapatkan nilai kehilangan penghantaran, corak radiasi, nilai dapatan, nilai arah, lebar jalur, HPBW, dan FNBW. Proses merekabentuk antenna ini bermula dengan rekaan bagi satu elemen diikuti dengan membuat rekaan bagi rangkaian antenna dimana nilai elemen, N dan beza fasa β akan di variasikan . Rumus factor rangkaian, AF alkan digunakan untuk memplot corak radiasi dan plot tersebut akan dibandingkan dengan corak radiasi hasil daripada simulai. Nilai kehilangan penghantaran yang minimum terhasil apabila nilai elemen adalah banyak. Apabila nilai β dinaikkan, nilai arah dan jalur lebar akan meningkat. Apabila nilai elemen semakin besar, nilai alang yang terhasil pada corak radiasi akan menjadi semakin banyak. Fabrikasi bagi antenna ini telah menggunakan papan FR4 dengan menggunakan teknik chemical etching. Kemudian, antenna yang telah difabrikasi akan di ukur dengan menggunakan penganalisa rangkaian dan set antenna untuk mendapatkan nilai kehilangan penghantaran, nilai arah, jalur lebar, FNBW, HPBW dan corak radiasi. Nilai-nilai tersebut akan dibandingkan dengan nilai yang terhasil daripada simulasi.

CONTENTS

CHAP TITLE

PAGES

PROJECT TITLE	i
STATUS REPORT FORM	ii
STUDENT DECLARATION	iii
SUPERVISOR DECLARATION	iv
DEDICATION	V
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xviii
LIST OF APPENDICES	XX

I INTRODUCTION

1.1 Project Introduction	1
1.2 Objective of Project	1
1.3 Problem Statement	2
1.4 Scope of Project	2
1.5 Report Organization	2

II LITERATURE REVIEW

2.1 Introduction	4
2.2 Basic Antenna Parameter	4
2.2.1 Radiation Pattern	5
2.2.2 Directivity	8
2.1.3 Input Impedance	9
2.1.4 Return Loss & Voltage Standing Wave Ratio (VSWR)	10
2.1.5Antenna Efficiency	12
2.1.6 Antenna Gain	12
2.1.7 Polarization	13
2.1.8 Bandwidth	15
2.3 Types of Antenna	16
2.4 Microstrip Antenna	16
2.5 Rectangular Patch and Transmission Line	19
2.5.1 Single Patch Antenna Design	19
2.5.2 Transmission Line Design	20
2.6 Antenna Array	
2.6.1 Array Factor	22
2.6.2 Antenna Array and Beamforming	22
2.6.3 Feed Network	23
2.7 Leaky Wave Antenna (LWA)	24
2.7.1 Slit-Coupled LWA	25
2.7.2 Single Conductor Strip LWA	25
2.7.3 Flat Slotted Waveguide (FSW)	26
2.8 Microstrip Leaky Wave Antenna (MLWA)	27

10

III MICROSTRIP LEAKY WAVE ANTENNA DESIGN

3.1 Introduction	29
3.2 Design Methodology	29
3.3 Design Specification	32
3.4 CST Microwave Studio	33
3.5 Single Patch Antenna Design and Simulation	37
3.6 Design of 12 elements with different value of β	40
3.7 Design for different number of elements N with fixed value	
of β	
3.8 Design of 6 elements with variation arrangement of β	42
3.9 Array Factor of MLWA	44
3.10 Fabrication Process	
3.11 Measurement	48
3.11.1 Return Loss Measurement	48
3.11.2 Radiation Pattern Measurement	48

IV RESULT ANALYSIS AND DISCUSSION

4.1 Result Analysis for Single Patch Antenna	50
4.2 Design Analysis of 12 Elements with Different Value of β	51
4.3 Design Analysis for Different Number of Elements, N with	
Fixed Value of $\beta = 45^{\circ}$	
4.4 Design Analysis of 6 Elements with Variation of β	57
4.5 Analysis for Design I and II	59
4.6 Analysis for Design III and Design IV	62
4.7 Array Factor Plot of 6 Elements with Different Value of β	64
4.8 Array Factor Plot for $\beta = 45^{\circ}$ with different number of	66
elements, N	
4.9 Measurement Results	68

11

V CONCLUSION AND RECOMMENDATION

5.1 Conclusion	73
5.2 Recommendation	74

REFERENCES	75
APPENDIX	77

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

NO TITLE

PAGES

2.1	Advantages and Disadvantages of Microstrip Antenna	18
3.1	MLWA Design Specifications	32
3.2	Parameter Setup in CST	34
3.3	Calculated Dimensions for Single Patch	37
3.4	Calculated Dimensions for Transmission Line	38
3.5	Calculated and Optimized dimension for single patch	39
3.6	Value of d with respect to β	40
3.7	Value of β for each design	43
4.1	Difference of Original and Normalized Patch in terms of Return	50
	Loss	
4.2	Variation of Phase Difference (β°) for 12 element patches	52
4.3	Variation Number of Elements, N	54
4.4	Beam Angle for Different Number of Elements	56
4.5	Variation of Phase Difference (β°) for 6 Elements Patches	57
4.6	Beam Angle for Different value of β	59
4.7	Simulation Result for Design I and Design II	60
4.8	Simulation Result for Design III and Design IV	62
4.9	Comparison of Beam Angles between Simulation and array	67
	Factor for Variation of β	

4.10 Comparison of Beam Angles between Simulation and array factor 67

C Universiti Teknikal Malaysia Melaka

for different number of elements, N

4.11	Comparison of simulation and measured return loss for Design 1	69
4.12	Comparison of simulation and measured return loss for Design I	70
	and II	
4.13	Comparison of simulation and measured return loss Design III	70

14

LIST OF FIGURES

NO TITLE

PAGES

2.1	Antenna Radiation Pattern	5
2.2	Radiation pattern for isotropic antenna and omni directional	6
	antenna	
2.3	Radiation Pattern of an omni directional antenna	7
2.4	Antenna Directivity	9
2.5	Equivalent circuit of transmitting antenna	11
2.6	Vertical and circular polarization in 3-D	13
2.7	Common antenna polarizations	14
2.8	Definition of antenna bandwidth in respect to return loss	15
	measurement	
2.9	Types of Antennas	16
2.10	Microstrip Antenna	17
2.11	Microstrip Antenna Radiation	18
2.12	Structure of a Microstrip Patch Antenna	19
2.13	Microstrip Transmission Line	20
2.14	Types of Array Feed Network	23
2.15	Types of Leaky Wave Antenna	24
2.16	Reduced equivalent circuit for slit-coupled MLWA	25
2.17	Single-conductor strip structure	26
2.18	Flat Slotted Waveguide (FSW)	27
2.19	Schematic diagrams of Microstrip Leaky Wave Antenna	28

3.1	Design Process	30
3.2	Project Methodology	31
3.3	Design Environment	33
3.4	Workspace Window	34
3.5	Brick parameter Window	35
3.6	Steps and Parameter Setup	35
3.7	Single Patch Antenna	37
3.8	Structure and Simulation for Single Patch Antenna (a) 2-D View,	38
	(b) 3-D View	
3.9	Response of return loss for single element	39
3.10	Structure for MLWA with 12 Elements in 2-D View	40
3.11	Figure 3.11 Simulation of MLWA for (a) 12 Elements, (b) 6	41
	Elements	
3.12	Simulation of MLWA for 3 elements	42
3.13	Design II (a) Structure, (b) Simulation	44
3.14	Example of Layout (a) CST Microwave Studio, (b) CorelDraw	45
	Suite 12	
3.15	Flow Chart for Fabrication Process	46
3.16	UV Exposure Unit	47
3.17	Return Loss Measurement Setup	48
3.18	Radiation Pattern Measurement Setup	49
4.1	Return Loss for Original and Optimized Single Patch	51
4.2	Structure for 12 Elements with $\beta = 45^{\circ}$	51
4.3	Response of Return Loss for variation of β	52
4.4	Structure for 3 Elements with $\beta = 45^{\circ}$	53
4.5	3-D plot of radiation pattern	55
4.6	2-D Radiation Pattern Plot	56
4.7	Structure for 6 Elements	57
4.8	2-D plot of radiation pattern for $\beta = 15^{\circ}$, 30° and 45°	58
4.9	Structure for Design I	59
4.10	Response of S_{11} for Design I and Design II	60

4.11	2-D plot of radiation pattern for increasing Design I and II	61
4.12	Structure for Design III	62
4.13	Response of S_{11} for Design III and Design IV	63
4.14	2-D plot of radiation pattern for Design III and Design IV	63
4.15	Array Factor Plot versus Simulation Plot with $\beta = 60^{\circ}$	64
4.16	Array Factor Plot versus Simulation Plot for 9 Elements	66
4.17	Fabricated MLWA	68
4.18	Radiation pattern for simulation and measurement result for	71
	Design 1	
4.19	Radiation pattern for simulation and measurement result for	71
	Design I	
4.20	Radiation pattern for simulation and measurement result for	72
	Design II	
4.21	Radiation pattern for simulation and measurement result for	72
	Design III	

17

LIST OF ABBREVIATIONS

LWA	-	Leaky-Wave Antenna
FPC	-	Fabry Perot Cavities
FSS	-	Frequency Selective Surface
FSW	-	Flat Slotted Waveguide
MLWA	-	Microstrip Leaky-Wave Antenna
MOS	-	Microwave Office Sotware
PRS	-	Partially Reflective Surface
RL	-	Return Loss
VSWR	-	Voltage Standing Wave Ration
WLAN	-	Wireless Local Area Network
Р	-	Total Power Radiated
S	-	Power Density
U_i	-	Radiation intensity for isotropic antenna
HPBW	-	Half power beam-width
FNBW	-	First Null Beamwidth
D	-	Directivity of Antenna
Z_{in}	-	Antenna impedance at the terminals
R _{in}	-	Antenna resistance at the terminals
X_{in}	-	Antenna reactance at the terminals
RL	-	Return Loss
L	-	Length of Patch
W	-	Width of Patch
l	-	Length of Transmission Line

W	-	Width of Transmission Line
ΔL	-	Length extension
h	-	Height of Substrate
β	-	Phase different between two radiating elements
Ν	-	Number of elements
d	-	Distance between elements
θ	-	Polar Angle
AF	-	Array Factor
φ	-	Phase Shift
dB	-	Decibel
dBi	-	Isotropic Decibel
С	-	Speed of light in vacuum
λ_{O}	-	Free-space wavelength

LIST OF APPENDICES

APPENDIX TITLE

PAGES

А	Types of Antenna Review	77
В	MLWA Design	81
С	Simulation Result	83
D	SigmaPlot Result	86
Е	Return Loss Measurement	88

CHAPTER I

INTRODUCTION

1.1 Project Introduction

In recent years, the microstrip leaky-wave antenna (MLWA) has got more and more attention for its simple feeding construction, easily coupling and frequency scanning. MLWA works in the first high mode TE_{10} . These antennas are intrinsically non-resonant and so are capable of wide band performance and, in addition, the main beam can be scanned by changing frequency. For these reasons, of late, they have attracted a lot of attention, especially for airborne applications. A microstrip leaky wave antenna with first higher-order mode excitation radiates power in the narrow frequency regime before cutoff. The radiation main-beam depends on the operating frequency. Therefore it can be used as a frequency-scanning antenna.

1.2 Objective of Project

The objective of this project is to design, simulate and fabricate Microstrip Leaky-Wave Antenna for WLAN application operating at frequency of 2.4 GHz. The designed antenna should have return loss of \leq -10 dB and maximum value of directivity and gain.

1.3 Problem Statement

Wireless local area network and wireless information network requires low-cost, low profiles and efficiency smart antenna. Besides that, the demand of antenna which has the ability to frequency-scan leads to the development of new design of microstrip antenna. Since that conventional design of microstrip antenna doesn't have the frequency-scanning ability, Microstrip Leaky-Wave Antenna (MLWA) can be the best candidate for its simple construction, low profiles, easy to match and frequencyscanning ability.

1.4 Scope of Project

This project will focus on 4 areas and the main focus is to design Microstrip Leaky-Wave Antenna operates at frequency of 2.4 GHz. Then, CST Microwave Studio was used to simulate the return loss, radiation pattern, directivity, gain, HPBW and FNBW of the design. Next, the design of leaky wave antenna was fabricated on FR4 board using the chemical etching technique. Finally, the return loss, directivity, gain, HPBW, FNBW and radiation pattern of the leaky wave antenna were measured.

1.5 Report Organization

The organization of this report is followed by Chapter 2 discusses the literature review of this project. This chapter contains research and information on several important concepts and types of antenna. It will follow by the design rules and calculations use in designing the antenna. Chapter 3 discusses and explains the methodology in completing this project. The calculation and simulation results will be include in Chapter 4. Finally, the conclusion from the study and extension progress in order to complete this project is stated in Chapter 5.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

Antennas are metallic structures designed for radiating and receiving electromagnetic energy. An antenna acts as a transitional structure between the guiding device (e.g. waveguide, transmission line) and the free space. The official IEEE definition of an antenna as given by Stutzman and Thiele follows the concept: "That part of a transmitting or receiving system that is designed to radiate or receive electromagnetic waves". The performance of an antenna can be gauged from a number of parameters [1].

2.2 Basic Antenna Parameter

There are several important antenna parameters that should be considered when choosing an antenna for certain application. Some important parameters of the antenna are return loss, radiation pattern, polarization, directivity and bandwidth.