STATISTICAL ANALYSIS AND OPTIMIZATION OF 5.8 GHz RF AMPLIFIER

KASRIDONA BIN RULLY

This report is submitted in partial fulfilment of the requirements for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > April 2009

C Universiti Teknikal Malaysia Melaka

FAKU	UNIVERSTI TEKNIKAL MALAYSIA MELAKA Lti kejuruteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II
Tajuk Projek : S 5	TATISTICAL ANALYSIS AND OPTIMIZATION OF .8GHz RF AMPLIFIER
Sesi Pengajian : 2	008/2009
Saya	KASRIDONA BIN RULLY (HURUF BESAR)
mengaku membenarkan Lapo kegunaan seperti berikut:	ran Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat
1. Laporan adalah hakmilik	Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan	membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan	membuat salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian tinggi.	
4 Sila tandakan $()$	
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PENULI	S) (COP DAN TANDATANGAN PENYELIA)
Alamat Tetap: Lot 217A Lorong 6, Kg. Pa Sabah Baru,Jalan Sin San, 91000 Tawau Sabah.	sir Putih
Tarikh:30 April 2009) Universiti Teknikal Malaysia Melaka

"I hereby declare that this report is the result of my own work except for quotes as cited in the references"

Signature	:
Author	: KASRIDONA BIN RULLY
Date	: 30 TH APRIL 2009

iii

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours."

Signature	:
Supervisor's Name	: ABDUL RANI BIN OTHMAN
Date	: 30 TH APRIL 2009

Specially dedicated to my beloved parents, family, friends, lecturers and all UTeM colleagues for their support and encouragement.

ACKNOWLEDGEMENT

First of all, I would like to express my grateful to Allah S.W.T.; The Almighty for the love and bless given, I have successfully completed my thesis. My foremost appreciation goes to my supervisor, Mr. Abdul Rani Bin Othman. He has guide me in every way he could for me to complete the research. I would like to thank my parents and family for the love and support that they have give me. Last but not least, to my housemates and BENT colleagues for the great friendship and encouragement for me to complete the thesis.

ABSTRACT

This thesis presented the work done on the design simulation of a Radio Frequency amplifier. The Exelics EPA018A-70 was chosen over other transistors due to the high efficiency it offers for an amplifier design. Several measurement techniques using Advanced Design System 2005A for simulations and MathCAD for the design calculation were used to verify the performance of the designed amplifier. The built amplifier performed reasonably well for the required frequency band 5.8GHz on the tests of power gain which achieved 18.61 dB, 2.934 dB noise figure, SWR of 1.092 for VSWR_{in} and 2.089 for VSWR_{out}, thereby closely matched for the measured readings with the simulated results.

ABSTRAK

Laporan ini membentangkan hasil kerja dalam mereka bentuk secara penyerupaan sebuah penguat frekuensi radio. Transistor EPA018A-70 daripada Exelics dipilih kerana ia mempunyai kadar kecekapan yang tinggi berbanding transistor yang lain untuk rekaan sebuah penguat. Perisian Advanced Design System 2005A digunakan untuk mereka bentuk litar dan pengujian manakala perisian MathCAD digunakan untuk kerja-kerja pengiraan dan mengesahkan hasil rekaan penguat. Rekaan penguat ini menunjukkan prestasi yang baik untuk frekuensi 5.8 GHz di mana gandaan kuasanya mencapai 18.61 dB dengan hingar 2.934 dB, SWR sebanyak 1.092 untuk VSWR_{in} dan 2.089 untuk VSWR_{out}, di mana ianya adalah hampir kepada nilai secara teori.

CONTENTS

CHAPTER TITLE

PAGE

PROJECT TITLE	i
DECLARATION	iii
DEDICATION	V
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvi
LIST OF APPENDICES	xviii

I INTRODUCTION

1.1	Project Background	1
1.2	Project Objectives	2
1.3	Problem Statements	2
1.4	Scope of work	2
1.5	Project Methodology	3
1.6	Report Structure	4

II LITERATURE REVIEW

2.1 Introduction	5
2.2 RF Amplifier	5
2.2.1 Review of RF amplifiers	7
2.2.2 Design of microwave transistor amplifier	11
using s-parameter	
2.2.3 Review of transmission lines	11
2.2.4 Review of scattering matrix	12
2.3 Stability	14
2.3.1 Stability analysis	16
2.4 Gains	16
2.5 Noise In Amplifiers	18
2.6 Voltage Standing Wave Ratio (VSWR)	20
2.7 Input And Output Matching	20
2.7.1 Impedance transformation and matching	22
2.8 Attenuator	24

III RESEARCH METHODOLOGY

3.1 Introduction	26
3.2 RF Amplifier Overview	27
3.3 Transistor Selection	27
3.4 Theoretical Analysis of RF Amplifier	28
3.4.1 Scattering parameter (S-parameter)	28
3.4.2 Stability analysis	29
3.4.3 Overall gains	31
3.4.4 Input and output impedance	32

C Universiti Teknikal Malaysia Melaka

3.4.5 Voltage standing wave ratio (VSWR)	33
3.4.6 Noise figure	33
3.5 Circuit Design	34
3.5.1 Stability analysis	34
3.5.2 Impedance matching	35
3.5.2.1 Input impedance matching	36
3.5.2.2 Output impedance matching	37
3.5.3 Transmission line	38
3.6 Simulate And Optimize The Designed RF	41
Amplifier	
3.7 Compare of Result Based On Theoretical And	41
Simulation	

IV RESULT, ANALYSIS AND DISCUSSION

4.1 Introduction	42
4.2 Theoretical Analysis Results	42
4.2.1 Scattering parameter (S-parameter)	43
4.2.2 Stability analysis results	43
4.2.3 Overall gains	44
4.2.4 Input and output impedance	45
4.2.5 Voltage standing wave ratio (VSWR)	46
4.2.6 Noise figure	46
4.3 Circuit Design	46
4.3.1 Impedance matching	47
4.3.1.1 Input impedance matching	47
4.3.1.2 Output impedance matching	48
4.3.2 Designed circuit	49
4.4 Simulation Results	50

4.4.1 Stability	50
4.4.2 S-parameter	50
4.4.3 Voltage standing w	vave ratio (VSWR) 53
4.4.4 Noise figure	54
4.5 Optimization	55
4.6 Result Comparison	59

V CONCLUSION

5.1 Introduction	60
5.2 Summary	60
5.3 Conclusion	61

VI REFERENCES 63

APPENDICES 65	5
---------------	---

LIST OF TABLES

NO	TITLE	PAGE
110		11102

2.1	Summary of RF amplifiers	10
2.2	π type and T type attenuator formula	25
3.1	S-parameter for FET EPA018A-70 at 5.8 GHz	29
3.2	Stability circle formula	30
4.1	S-parameter for FET EPA018A-70 at 5.8 GHz	43
4.2	Circuit elements value	49
4.3	Optimized circuit elements value	59
4.4	Results table	59

LIST OF FIGURES

NO TITLE PAGE

2.1	RF amplifier in communication system blocks	6
2.2	Circuit layout	7
2.3	Stability circle	15
2.4	Typical amplifier systems	17
2.5	Matching network to load	21
2.6	Single lumped element	22
2.7	Dual lumped elements	22
2.8	Triple lumped elements	23
2.9	Distributed elements	23
2.10	Hybrid	23
2.11	π type and T type attenuator	24
3.1	Typical amplifier systems	27
3.2	Input stability circles	30
3.3	Output stability circles	31
3.4	Input and output stability circles	35
3.5	Input impedance matching	36
3.6	Output impedance matching	37
3.7	Sample calculations for transmission line using MathCAD	39
4.1	Input impedance matching	47

4.2	Output impedance matching	48
4.3	Designed RF amplifier circuit	49
4.4	Simulation stability	50
4.5	S ₁₁ plot	51
4.6	S ₂₂ plot	51
4.7	S_{21} and maximum gain plot	52
4.8	VSWR _{in} plot	53
4.9	VSWR _{out} plot	53
4.10	Simulation NF _{min}	54
4.11	Noise and available gain circles	54
4.12	Optimized stability	55
4.13	Optimized gain	56
4.14	Optimized VSWR _{in}	57
4.15	Optimized VSWR _{out}	57
4.16	Optimized noise figure	58
5.1	Final designed circuit of RF amplifier	62

XV

LIST OF ABBREVIATIONS

ADS	-	Advanced Design System
AlN	-	Aluminium Nitrate
AlGaN/GaN	-	Aluminum Gallium Nitride / Gallium Nitride
BJT	-	Bipolar Junction Transistor
BPF	-	Band Pass Filter
CMOS	-	Complementary Metal Oxide Semiconductor
dB	-	Decibel
DC	-	Direct Current
FET	-	Field Effect Transistor
FSK	-	Frequency Shift Keying
GaAs	-	Gallium Arsenide
HBT	-	Heterojunction Bipolar Transistor
HEMT	-	High Electron Mobility Transistor
IEEE	-	Institute of Electrical and Electronic Engineering
InGaAs	-	Indium Gallium Arsenide
LNA	-	Low Noise Amplifier
MESFET	-	MEtal Semiconductor Field Effect Transistor
MMIC	-	Monolithic Microwave Integrated Circuits
PA	-	Power Amplifier
PAE	-	Power Added Efficiency
RF	-	Radio Frequency
SiC	-	Silicon Carbide

TL	-	Transmission Line
TWPA	-	Travelling-Wave Power Amplifier
UWB	-	Ultra Wide Band
VSWR	-	Voltage Standing Wave Ratio
WLAN	-	Wireless Local Area Network

LIST OF APPENDICES

APPENDIX TITLE

PAGE

А	Exelics EPA018A-70 data sheet	65
В	Calculation of theoretical measurements	67
С	Calculation of transmission line conversion	73

CHAPTER I

INTRODUCTION

1.1 Project background

Radio Frequency (RF) means any frequency within the electromagnetic spectrum associated with radio wave propagation. When an RF current is supplied to an antenna, an electromagnetic field is created that then is able to propagate through space [1].

Radio Frequency amplifier (RF amplifier) represents one of the basic building blocks of the communication system. There are many types of RF amplifier and every types of RF amplifier have its own characteristic. But the main purpose of all RF amplifier types is quite similar. The purpose of the RF amplifier is to amplify the received signal to acceptable levels of gain thus improving the efficiency of transmission from source to load.

1.2 Project objectives

The main objective of this project is to study the background of a RF amplifier and proposed a suitable RF amplifier unit and optimizes the circuit with overall gain of 20dB with noise figure less than 3dB.

1.3 Problem statements

As we know, the main function of RF amplifier is to amplify the received signal to a certain level of gain. RF amplifier is needed in the communication system because of its function which is to amplify the received signal. The received signal in the receiver antenna is lower than the transmitted signal due to the attenuation and noise in the channel. The RF amplifier used to amplify the information signal in order to have a clearer signal.

The major problem in this project is to design the suitable RF amplifier for the specified requirements. The method used in designing the RF amplifier and matching network also are the crucial part in designing the RF amplifier.

1.4 Scope of work

The scopes of work for this project are limited to the following aspects:

1. Types of amplifier.

Several types of RF amplifier and its application viewed to understand about the RF amplifier.

2. Types of transistor.

Types of transistor used in most RF amplifier viewed and its characteristic studied.

3. Matching technique.

Types of matching technique studied the advantages and disadvantages for every matching technique observed.

 Specification for circuit and testing.
The specification for circuit and testing are set based on previous achievement of RF amplifier design.

1.5 Project methodology

Phase 1:

Transistor selection.

Phase 2:

Theoretical analysis of RF amplifier.

Phase 3:

Circuit design and analysis.

Phase 4:

Simulate and optimize the designed RF amplifier

Phase 5:

Compare of result based on theoretical and simulation.

1.6 Report structure

This report divided into 5 chapters. The first chapter gives a brief explanation about RF amplifier and its function in communication systems. It also gives brief explanations about the overall process of project.

The second chapter is about the literature review of the project. Background knowledge of RF amplifier studied in order to understand the basic in RF amplifier design. Other parameter used in the design such as stability, gains, and matching technique are also studied.

The third chapter is about research methodology which explained about method used and process involved in the project.

The fourth chapter is about the result, analysis and discussion. All the data and results that obtained at the end of this project will be documented in this chapter.

The fifth chapter is the conclusion for this project which includes the final design of RF amplifier and its characteristic performance.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter reviews about the information obtained from findings and any useful sources. Information from the literature is very important as the background of RF amplifier design. Basic principles used in the analysis and design of RF amplifier developed in this chapter.

2.2 RF Amplifier

The power amplifier is the most important and expensive device in the RF block of Wireless LAN system [2]. The design of RF amplifiers involves less emphasis on noise parameters and more emphasis on linearity and inter-modulation, as well as efficiency and thermal considerations. To design a RF amplifier, one must use largesignal S-parameters and be aware of nonlinear effects.

Where careful design of the input matching network is required to realize the full capabilities of low noise amplifiers, in RF amplifiers more emphasis tends to be on optimizing the output matching network. There are, however, special problems associated with the very low input impedance that can be found in FET power devices, which require special treatment in the input matching network if wideband operation is to be achieved [3].

A key issue for multi-stage amplifiers is the ability to cascade individually designed stages without a requirement for retuning or redesign to account for the characteristic of the driving or following stages. In many cases, the use of balanced amplifiers permits the benefit of 3 dB coupler inter-stages, which direct reflected power to the isolated port rather than the driving stage. As we will see in later, there are special problems of nonlinear oscillations arising from interaction between signal harmonics and modes of the output matching structure [3]. Figure 2.1 below shows the block diagram of an amplifier circuit:

Figure 2.1 RF amplifier in communication system blocks.