ANTI – NAPPING SYSTEM

SITI HAJAR BINTI SOHAIMI

This report is submitted in partial fulfillment of the requirement for the award of Bachelor of Electronic (Industrial Electronics) With Honours

Faculty of Electronic and Computer Engineering Univeriti Teknikal Malaysia Melaka

April 2009

C Universiti Teknikal Malaysia Melaka

	UNIVERSTI TEKNIKAL MALAYSIA MELAKA Ejuruteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II
3 3	NAPPING SYSTEM
Sesi : 2/2008 Pengajian : 2/2008	3/2009
mengaku membenarkan Laporan syarat kegunaan seperti berikut:	SITI HAJAR BINTI SOHAIMI (HURUF BESAR) Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat- iversiti Teknikal Malaysia Melaka.
	embuat salinan untuk tujuan pengajian sahaja.
-	embuat salinan laporan ini sebagai bahan pertukaran antara institusi
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PEN	
Alamat Tetap: N0, 40 JALAN SAGA	5
TAMAN SAGA,	
28400 MENTAKAB, P	AHANG
Tarikh:	Tarikh:

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

	00
Signature	:
Author	SITI HAJAR SOHRIMI
Date	

iii

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours."

Signature	. Hazaratanza
Supervisor's Name	HAZURA HAROON
Date	30th APRIL 2009

I dedicate this to both of my lovely parents and family, a person that love and need most for giving me a support, all my lecturers, and all my friends.

ACKNOWLEDGEMENT

I would like to take this opportunity to thank everyone whom had given their support and help throughout the whole period of completing this project.

First and foremost, I would like acknowledge the endless help and support received from my supervisor, Pn. Hazura Binti Haroon throughout the whole period of completing this final year project. Her guidance has really been the main source of motivation and has driven me in completing this project successfully.

Finally, I would like to thank all my fellow colleagues and family for their generous support, assistance and ideas in completion of this project.

ABSTRACT

The primary purpose of the Anti-Napping Device is to develop devices that can prevent a student from falls asleep in class and stay awake without disturbing their surrounding. In order to accomplish this project, two stages are considered as the solution to this project. The main objective of this project is to develop a pair of devices that eventually detect when a person falls asleep and wake the students through vibration. For the detecting stage, the force sensor is attached at a pen and it measures the user's grip to monitor their state. After the monitoring stage, the collected data is transmitted using RF module to a microcontroller and the microcontroller digitizes the digital data. If the force falls below a certain threshold, the microcontroller makes a decision which alert should be activated. For the alarm system, two DC motors is used as a vibration device. In addition, the project code is developed in C language and then converted to hex code that was readable for microcontroller. This device acts like a portable alarm, simple and user-friendly.

ABSTRAK

Projek ini bertujuan membina sebuah alat pencegah mengantuk untuk mencegah para pelajar dari mengantuk semasa berada di dalam kelas dan seterusnya memastikan mereka tidak menganggu proses pembelajaran di dalam kelas.Dalam memenuhi keperluan dan menjayakan projek ini, terdapat dua bahagian penyelesaian utama dalam projek ini. Objektif utama projek ini adalah untuk menghasilkan sepasang alat pencegah mengantuk yang boleh menghalang dan mengelakkan para pelajat ini daripada mengantuk semasa di dalam kelas dan seterusnya menggunakan getaran untuk menggerak mereka. Untuk bahagian pengesanan, satu pengesan daya telah digunakan, dilekatkan pada sebatang pen, dan seterusnya pengukur daya in berfungsi mengukur kadar kuantiti genggaman jari pada pen tersebut. Selepas proses pemantauan dilakukan, kesemua data yang dikumpul dan dihantar oleh penghantar and penerima kepada pengawal mikro dan seterusnya memproses data tersebut dalam bentuk isyarat digital. Jika daya yang dikesan berada pada bawah tahap voltan yang ditetapkan di dalam pengawal mikro, maka pengawal mikro membuat keputusan untuk mengaktifkan alat amaran. Untuk memberi amaran, dua buah DC motor telah digunakan sebagai alat untuk memberi amaran kepada pengguna. Selain daripada itu, projek ini menggunakan kaedah perisisan bahasa C dalam menghasilkan dan menukar bahasa kod yang boleh dibaca oleh pengawal mikro. Alat ini bertindak sebagai sebuah alat mudah alih dan mudah digunakan.

TABLE OF CONTENT

CHAPTER TITLES

PAGE

PROJECT TITLE	i
PENGESAHAN STATUS LAPORAN	ii
STUDENT CONFESSION	iii
SUPERVISOR APPROVAL	iv
DEDICATION	v
ACKNOWLWDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATION	xviii
LIST OF REFERENCES	xix

INTRODUCTION

Ι

1.1	Overview	1
1.2	Problem Statement	3
1.3	Project Objectives	3
1.4	Scope of Project	4
1.5	Methodology of Project	6
1.6	Project Structure	7

Comprison Between Recent Project Nap Alarm/ Nap Zapper Snooze Alert Device 2.1.2.1 Block Diagram Description

2.2	Perforn	nance and H	ance and Behavioral Other Systems		
2.3	Force S	Force Sensor			
	2.3.1	Overview			
	2.3.2	Performa	Performance and Behavioral Force Sensor		
		2.3.2.1	Force Sensor Range and Resistance	15	
			Value		
		2.3.2.2	Repeteability	16	
		2.3.2.3	Linearity	16	
		2.3.2.4	Hysteresis	16	
		2.3.2.5	Time Drift	17	
		2.3.2.6	Temperature Sensitivity	17	
	2.3.3	Sensitivi	ty of Force Sensor	17	
	2.3.4	Saturatio	n	19	
	2.3.5	Sensor L	ife/Durability	19	
	2.3.6	Material	and Configuration	19	
2.4	LM358	N Dual Op	erational Amplifier	19	
2.5	Microc	ontroller		21	
	2.5.1	PIC168	76A Pin Out	23	
2.6	Voltage	Regulator		24	
	2.6.1	Linear	Voltage Regulator	25	
	2.6.2	Switch	Switching Regulator		
2.7	DC Mot	tor		26	

2.1.1

2.1.2

2.1

II

9

9

10

12

2.8	RF Mod	ule	26
	2.8.1	Transmitter	27
	2.8.2	Receiver	27
2.9	Power T	ransistor (P2222A)	28

III

METI	HODOL	OGY		29
3.1	Overv	iew		29
3.2	Literat	ure Reviev	V	29
3.3	Flowe	hart		30
	3.3.1	Flowc	hart for Overall Process	30
	3.3.2	Flowc	hart for C Program Development	33
	3.3.3	Flowc	hart for Pen Circuit	35
	3.3.4	Flowc	hart for PIC	35
3.4	Block	Diagram		37
	3.4.1	Pen Dev	ice Block Diagram	37
		3.4.1.1	Description of Block Diagram	37
	3.4.2	Pocket D	Device Block Diagram	39
		3.4.2.1	Description of Block Diagram	40
3.5	Circuit	Design		42
	3.5.1	Pen and	Pocket Circuit	42
		3.5.1.1	Voltage Regulator	44
		3.5.1.2	PIC 16F876A	45
		3.5.1.3	Crystal Oscillator	46
		3.5.1.4	LED and Pushbutton	47
		3.5.1.5	Dc Motor	48
	3.5.2	Printed (Circuit Board (PCB) Design	49
3.6	Techni	cal Require	ement	50

3.6.1	Components Testing	50
3.6.2	Circuit Testing	50
3.6.3	Hardware and Software Implementation with	
	Analysis	50

RESU	JLTS AND DISCUSSION			51
4.1	Overview			51
4.2	Backgr	ound Studies		
	4.2.1	Sensor Cire	cuit	51
4.3	Results	5		54
	4.3.1	Circuits D	esign	54
		4.3.1.1	Sensor Circuit Design	54
		4.3.1.2	Pocket Circuit Design	55
	4.3.2	Circuits Te	esting	57
		4.3.2.1	Sensor Circuit Simulation Results	57
		4.3.2.2	Pocket Circuit Simulation Results	60
	4.3.3	Hardware	and Components Testing	62
		4.3.3.1	Verifying the voltage and current	
			setting of individual components	62
		4.3.3.2	Threshold voltage calibration	63
		4.3.3.3	RF Module Wireless Range	63
		4.3.3.4	LED Voltage	65
		4.3.3.5	Voltage Regulator of Pocket Circuit	65
		4.3.3.6	Testing the project on a breadboard	66
		4.3.3.7	Hardware Testing	69
	4.3.4	PCB Desig	gn	70
4.4	Discuss	sion		73

IV

CONCLUSION		
5.1	Conclusion	75
5.2	Suggestion	75
	5.1	5.1Conclusion5.2Suggestion

REFERENCES

LIST OF TABLES

NO	TITLE	PAGE
2.1	Pin Diagram of P2222A	28
4.1	All the measurement value is recorded	58
4.2	Calculation value	59

LIST OF FIGURES

NO TITLE

PAGE

1.1	Flowchart of Entire Project	6
2.1	A nap zapper device	9
2.2	Portable alarm	10
2.3	A person being the driver wearing and using the instant device	10
2.4	Perceptive view of portion of the collar	11
2.5	Block diagram 1	11
2.6	A flexiforce sensor	14
2.7	Force sensor vs. resistance and force sensor vs. conductance $(1/R)$	18
2.8	A typical sensor response	18
2.9	An op-amp	20
2.10	Non-Inverting Amplifier	20
2.11	PIC 16F876A	21
2.12	PIC 16F876A Pin Diagram	24
2.13	Voltage Regulator	25
2.14	DC Motor	26
2.15	Transmitter module	27
2.16	A Receiver Module	27
2.17	Transistor P2222A	28
3.1	Flow chart of Overall Process	31
3.2	Overall state diagram of the project	32
3.3	Flowchart for C program development	33

3.4	Flowchart for pen circuit	35
3.5	Flowchart for pocket device	36
3.6	Block diagram of pen device	37
3.7	Force sensor	37
3.8	TX-RX can be used to transmit signal	38
3.9	A button cell	39
3.10	Block diagram of pocket device	39
3.11	RX used to receive data	40
3.12	Microcontroller as the centre unit of pocket device	41
3.13	DC motor as vibrator motor	41
3.14	Designing the pen circuit of preferred design with Proteus	42
3.15	Pocket circuit of preferred design	43
3.16	Voltage Regulator	44
3.17	Voltage regulator circuit	44
3.18	Microcontroller circuit	45
3.19	Crystal oscillator	46
3.20	Crystal oscillator circuit	47
3.21	Switch and LED connection	47
3.22	DC motor circuit	49
4.1	Example circuit for force sensor	52
4.2	Force vs. output voltage	53
4.3	Graph force vs. Resistance (Rs)	53
4.4	Schematic for pen circuit	55
4.5	Schematic for pocket circuit.	56
4.6	Simulation for sensor circuit	57
4.7	Resistance (Rs) vs. output voltage	58
4.8	Graph of resistance (Rs) vs. output voltage	59
4.9	Schematic for pocket device	60
4.10	Led and Motor for slow vibration turn on	61
4.11	Led and Motor for strong vibration turn on	62
4.12	RF modules is tested with oscilloscope and function generator	63

4.13	RF waveform	64
ч.15	KI waveloini	04
4.14	Getting voltage from the output of receiver	64
4.15	The pen circuit is tested whether it functions or not.	66
4.16	Pocket circuit is tested onto the breadboard	67
4.17	LED is on, motor for light vibration	67
4.18	Strong motor is operated for 6 second delays	68
4.19	A pen device and pocket device.	69
4.20	The voltage is determined when the user grip the sensor	69
4.21	Green LED is lighting when the sensor is gripped	70
4.22	Pocket circuit is tested	70
4.23.	PCB design for pen device	71
4.24	After etching part is done	71
4.25	PCB design for pocket device	72
4.26	After components are soldered onto the PCB	72

LIST OF ABBREVIATIONS

ABBREVIATIONS

FULL TERMS

PIC	Peripheral Interface Controller
TX	Transmitter
RX	Receiver
RF	Radio Frequency
SAW	Sound Wave Resonance
TTL	Transistor-Transistor Logic
NSF	National Sleep Foundation
DC	Direct Current
AC	Alternating Current
RAM	Random Access Memory
EPROM	Erasable Programmable Read-Only
	Memory
MCLR	Medium Capacity Long Range
LED	Light Emitting Diode

LIST OF REFERENCES

NO TITLE

PAGE

А	Pseudo source code for pocket circuit	79
11	i seudo source code foi poeket encun	

🔘 Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

Nowadays, evolution of technologies has been assimilation into the entire life without realized it make our life easier. Nevertheless, these technologies have it own advantages and disadvantages that can give good or bad impact depends on how to utilize it. This project is discovered because of this increasingly widespread technology exposure. Furthermore, this project is designed to produce a gadget that very useful to consumer and corresponding to global technology.

1.1 Overview

According to a new study by National Sleep Foundation (NSF), drowsiness cause over than 1,600 adolescent is falling asleep in class at least once a week. Most of adolescents admit to cranky, depressed, and too tired to exercise [1]. In addition, they are often driving drowsy, and half of all teens who drive reported that they have done so at least once in the past year. Kyla Wahlstrom, director of the Center for Applied Research and Educational Improvement (CAREI) at the University of Minnesota told ConsumerReports.Com [2]:

"This is 9 to 9 1/2 hours of enforced sleep that a teen's body wants. It is not shift able; it is fixed. Kids sitting in classes before 8 a.m. are biologically, still in sleep mode."

Drowsiness is a state of decreased awareness or alertness associated with a desire or tendency to fall asleep. Almost everyone has felt drowsiness before, usually due to normal tiredness from a long day or lack of sleep. Several approaches have been developed to detect drowsiness [7]. Also because of that, this project is discovered to develop a device that can detect drowsiness especially in order to prevent accidental napping in the class. In addition, a device that can help prevent accidents due to adolescents' drowsiness in class could realize a great saving in human life.

The system is composed of two devices; one is attached at a pen at the user's hand and the other one is placed inside their pocket. The project is split into the drowsiness detection system, microcontroller and programming, and the feedback warning.

The drowsiness detection is consists of sensor circuit. In order to accomplish the project, the application of force sensor is used to measure their grip. The sensor circuit is designed to detect if the person release the pen by measuring and determining the alertness state of force exert by the user grip. This system communicates wirelessly using RF transmitter and receiver. In order to detect the user's grip, the sensor must have a reasonable range and transmit the signal information to the pocket device. Based on the signal from the handheld device, it can determine if the user, the PIC will send another signal to increase the vibration. The PIC acquires a digital signal from the receiver and then activates the motors to awaken the user. This device is designed for everyday use, not to bother anyone and be able to help avoid wasting time passed out. Ideally, this system should be easy to use, and the sensitivity settings can be easily adjusted so that it does not constantly trigger the motor.

1.2 Problem Statement

At some point in a college student's life, they may unintentionally fall asleep in class. Tired students may have a tough time staying alert when they need to be in class or while studying. Consequently, the process of lesson will be slowed down and it can be a distraction to other students. Sleeping in class also can signify another problem that warrants your lecturer attention. This is the motivation by doing this project; to create a system that can help students to stay awake without causing disturbing to their surroundings.

1.3 Project Objective

The objectives of this project are:

- To design a pair of devices that eventually detect when a person falls asleep and wake the user through vibrations.
- To integrate between PIC microcontrollers with RF module to create a penpocket devices as alarm system.
- 3) To design a system that does not cause a disturbance to others around.

All the project objectives are elaborately in detail explanation.

- To design a pair of devices that eventually detect when a person falls asleep and wake the user through vibrations.
 - The aim of this project to develop a pair of devices, one is attached at the pen and the other one in pocket. This device intends to detect the alertness state when the person (student) fall asleep through a sensor and wake the person through motor vibration.

 To integrate between PIC microcontroller with RF module to create a pen – pocket devices as alarm system.

- The integration between PIC microcontroller with RX and TX module in order to create a pen- pocket device as alert device including the sensor must be able to measure the correct user's grip within a specific range, and should be able to send data to the RF transmitter. Besides, the devices should be able to communicate wirelessly up to a distance of 10 feet. The PIC microcontroller should be able to process the signal and be able to activate the vibrator motor following a 6-second delay after the sensor reading falls below a certain range.

3) To design a system that does not cause a disturbance to others around.

- To create a system that can wake students in drowsiness situation without causing a disturbance to those around them. In addition, the vibrator should be sufficient power to wake the students up.

1.4 Scope of Project

This project is subjected to several scope and limitation that are narrowed down to the study. In addition, the scope of this project is developing a pair of devices, one is a handheld device (pen) and one is a pocket device. The system is consisted of components interfacing with each other. For designing and testing purpose, each component is divided into separate block.

i) Force sensor circuit

- a. To detect the amount of force exerted by the user
- b. Use RF modules to transmit the signal.
- c. This circuit is designed by using PROTEUS software.

ii) Pocket circuit

- a. Use LED as an indicator.
- b. Use RF modules to receive signal for sensor circuit.
- c. Use DC motor as an output, in other words this motor operates as feedback warning system.
- d. This circuit is designed by using PROTEUS software.
- iii) Microcontroller and Programming
 - a. Language to use is C language to develop coding and MicroC Compiler is used as compiler.

The handheld device is composed of a force sensor, op-amp, and RF transmitter which to detect the amount of force exerted by the user's. This signal transmits a digital signal using RF modules to the PIC. For pocket device, it is composed of a receiver, PIC, and two vibration motors. In order to accomplish this project, a force sensor is used to determine the amount of force exerted by the user's grip at the pen. The scope of this project also required studying the force sensor that suitable for the sensor circuit design. The PIC controller is the centre control unit of the pocket device. It acquired a digital signal from the receiver. The simulation for system is done first prior to prove the circuit able to produce the desired output. The project also comprising hardware design rather than just simulation