STUDENT ATTENDANCE THROUGH RFID AND BLUETOOTH

MOHD SAHIDAN BIN ZAKARIA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

BORANG PENGESAHAN STATUS TESIS *

JUDUL: STUDENT ATTENDANCE THROUGH RFID AND BLUETOOTH

SESI PENGAJIAN: 2010/2011

Saya MOHD SAHIDAN BIN ZAKARIA

Mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di PerpustakaanFakultiTeknologiMaklumatdanKomunikasidengansyarat-syaratkegunaansepertiberikut:

- 1. Tesis adalah hakmilik Universiti Teknikal Malaysia Melaka
- 2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ** Sila tandakan (/)

_____ SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

___/___ TIDAK TERHAD

(TANDATANGAN PENYELIA)

Alamat tetap: Lot 534, Kg Repek 17070, Pasir Mas, Kelantan Darul Naim.

(TANDATANGAN PENULIS)

EN. MUHAMAD SYAHRUL AZHAR BIN SANI.

Tarikh: 15/07/2011

 Tarikh :
 Tarikh :
 ISTOP

 CATATAN:
 * Tesis dimaksudkan sebagai Laporan Akhir Projek Sarjana Muda (PSM)

** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada

pihak berkuasa.

STUDENT ATTENDANCE THROUGH RFID AND BLUETOOTH

MOHD SAHIDAN BIN ZAKARIA

This report is submitted in partial fulfillment of the requirement for the Bachelor of Computer Science (Computer Networking)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2011

DECLARATION

I hereby declare that this project report entitled

STUDENT ATTENDANCE THROUGH RFID AND BLUETOOTH

is written by me and is my own effort and that no part has been plagiarized without citations

STUDENT

DATE:_____

: (MOHD SAHIDAN BIN ZAKARIA)

SUPERVISOR:

15/07/2011

R: DATE: DATE: DATE:

. .

ACKNOWLEDGEMENT

Alhamdulillah to ALLAH SWT for his gratefulness and kindness for allowing me and help me in so many way in completing my Projek Sarjana Muda.

First of all, I would like to pin point my appreciation to Universiti Teknikal Malaysia Melaka (UTeM) for offering this course, BITU 3973 Projek Sarjana Muda (PSM) that really help me in exploring system and develop a system. I would like to extend my deepest appreciation and gratitude to my supervisor, Mr. Muhamad Syahrul Azhar Bin Sani for his keen interest, understanding, invaluable suggestion, constructive criticism and guidance throughout this project. Thank you for giving the opportunity to grow during the process of completing this project by giving me greater latitude of freedom in conducting this study.

Secondly, I would like to express my sincere thanks and appreciation to my entire lecture from Faculty of Information And Communication Technology (FTMK) who had pass down their knowledge and guide me as well during my studies in UTeM, also to whole BITC colleague made for their able value assistance, guidance, suggestion and also for providing the necessary facilities.

I would like to express my sincere thanks and appreciation to my beloved family especially my parent for giving me support, encouragement and motivation from starting of the project until completion of the project. Thank for being an understanding parents.

Last but not the least, Also special thanks to all my friends and course mates and all those who help for making my time at UTeM a memorable one. Thank you.

ABSTRACT

Student Attendance System is a project based on Bluetooth and RFID reader application. This project been developed to record the attendance of the student during the learning sessions in the classes with more efficient and systematic. On the other hand, this system will save time because of all the process involved in recording the student's attendance are not done by the lecturers anymore, instead, this system will handle all the processes. In this project, RFID readers will record the student information by student matric card. After that, information will be sent to computers in the classroom or laboratory. After that, users which consist of lecturers, staff and student need to connect their Mobile Phone with the computer via Bluetooth to enable them to view the attendance list in the class.

ABSTRAK

Sistem Kehadiran Pelajar merupakan sebuah projek yang berasaskan aplikasi Bluetooth dan pembaca RFID. Projek ini di bangunkan bertujuan untuk merekodkan kehadiran pelajar semasa sesi pembelajaran di dalam kelas atau di dalam bengkel berasaskan sistem dengan lebih cekap dan sistematik. Pada masa yang sama, sistem ini dapat menjimatkan masa kerana segala proses merekodkan kehadiran pelajar bukan lagi dilakukan oleh para pensyarah tetapi dilakukan oleh sistem. Dalam projek ini, pembaca RFID akan merekodkan maklumat pelajar melalui kad matrik pelajar. Selepas itu, maklumat tersebut akan dihantar kepada komputer di dalam kelas atau bengkel. Kemudian pengguna yang terdiri daripada pensyarah, kakitangan dan pelajar perlu menyambungkan telefon bimbitnya dengan komputer melalui Bluetooth untuk membolehkan beliau melihat senarai kehadiran pelajar dalam kelas tersebut.

TABLE OF CONTENTS

CHAPTER	SUBJECT	PAGE	
	ACKNOWLEDGEMENT	i	
	ABSTRACT	ii	
	ABSTRAK	iii	
	TABLE OF CONTENTS	iv	
	LIST OF TABLE	viii	
	LIST OF FIGURE	ix	
CHAPTER I	INTRODUCTION		
	1.1 Project Background	2	
	1.2 Problem Statement	2	
	1.3 Project Objective	3	
	1.4 Scope	4	
	1.5 Project Significant	4	
	1.6 Expected Output	4	
	1.7 Conclusion	5	

CHAPTER II LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction	6	
2.2 Literature Review	7	

2.2.1 Domain	7
2.2.2 Keyword	11
2.3 Proposed Solution	12
2.3.1 Project Methodology	12
2.4 Project Schedule and Milestone	14
2.5 Conclusion	15

CHAPTER III ANALYSIS

3.1 Introduction	16
3.2 Problem Analysis	17
3.3 Requirement Analysis	18
3.3.1 Functional Requirement	19
3.3.2 Non-Functional Requirement	20
3.3.3 Others Requirement	20
3.4 Conclusion	22

CHAPTER IV	DESIGN	
	4.1 Introduction	23
	4.2 High-Level Design	23
	4.2.1 System Architecture	24
	4.2.1.1 Architecture View	24
	4.2.1.2 Static View	24
	4.2.1.3 Dynamic View	24
	4.2.2 User Interface Design	28
	4.2.2.1 Navigation Design	31
	4.2.2.2 Input Design	32
	4.2.2.3 Output Design	34

C Universiti Teknikal Malaysia Melaka

4.2.3 Database Design	34
4.2.3.1 Conceptual Database Design	34
4.2.3.2 Logical Database Design	35
4.3 Detail Design	
4.3.1 Software Specification	36
4.3.2 Physical Database Design	36
4.4 Conclusion	

CHAPTER V IMPLEMENTATION

.....

5.1 Introduction	38
5.2 Software Development Environment Setup	
5.3 Software Configuration Management	40
5.3.1 Configuration Environment Setup	40
5.3.2 Version Control Procedure	41
5.4 Implementation Status	42
5.5 Conclusion	

CHAPTER VI IMPLEMENTATION 6.1 Introduction 6.2 Test Pelan 6.2.1 Test Organization 6.2.2 Test Environment 6.2.3 Test Schedule 6.3 Test Strategy 6.3.1 Classes of Tests 6.4 Test Design 6.4.1 Test Description

50

44

44

45

45

47

48

48 49

49

6.5 Test Result and Analysis	53
6.6 Conclusion	60

CHAPTER VII CONCLUSION

7.1 Observation on Weakness and Strength		61		
	7.1.1	Streng	th	61
		7.1.2	Weakness	63
7.2	Propo	sition fo	or Improvement	64
7.3	Contri	bution		64
	7.3.1	User N	Ianual	65
7.4	Conclu	usion		65

REFERENCES	66
BIBILIOGRAPHY	67
APPENDICES	68

LIST OF TABLE

TITLE

TABLE

2.1	Keywords Description	11
3.1	Software Requirement	21
3.2	Hardware Requirement	22
4.1	Input Design	34
5.1	Implementation status of	
	Student Attendance System	43
6.1	Location of test Environment	45
6.2	Hardware and firmware configuration	46
6.3	Test Schedule	47
6.4	Module Test	49
6.5	Test data for registration module	51
6.6	Test data for student's registration module	51
6.7	Test data for class registration module	52
6.8	Result of test for every module	53

viii

PAGE

LIST OF FIGURE

DIAGRAM TITLE

PAGE

2.1	Operation of the RFID	7
2.2	The Bluetooth stack	9
2.3	Bluetooth-specific	9
2.4	Bluetooth-enabled application	10
2.5	Waterfall Model of Project methodology	12
3.1	Data Flow Diagram for RFID	17
3.2	Data Flow Diagram for Bluetooth	18
3.3	Diagram for Student Attendance System	19
4.1	Sequence Diagram for User	25
4. 2	Sequence Diagram for User Registration (Staff)	26
4.3	Sequence Diagram for User Registration (Student)	26
4.4	Sequence Diagram for RFID Searching	27
4.5	Sequence Diagram for Bluetooth	28
4. 6	Registration Interface	29
4.7	Registration of new Students Interface	29
4.8	Registration of new Class Interface	30
4.9	Main Menu Interface	30
4.10	Mobile Phone Interface	31
4.11	Report Interface (Email)	31
4.12	Navigation Design Student Attendance System	32
5.1	Diagram for Student Attendance System	39

5.3	Declare the connection with RFID	40
5.4	Declare the connection to link	
	Visual Basic and NetBeans IDE	40
5.5	Backup of the database of the	
	Student Attendance System	41
6.1	RFID running with popup message	54
6.2	Registration of new user Successful	54
6.3	Log In with popup message Successful	55
6.4	Log in with popup message Unsuccessful	55
6.5	Update of user Successful	56
6.6	Request Password of user Successful	56
6.7	Registration of new Students Successful	57
6.8	Successful registration of new Class	57
6.9	Record of Student ID Generated Successful	58
6.10	Report of Student Attendance List	58
6.11	Student Attendance List Print Preview	58
6.12	Student Attended List Sent to Email	59
6.13	UTeM Server Scanned Successfully	59
6.14	UTeM Server Scanned Unsuccessfully	59
6. 15	Attendance List Successfully Generated in	
	Phone View	60

LIST OF APPENDICES

ATTACHMENT	TITLE	PAGE
Α	User Manual	68
В	Gantt Chart	77

CHAPTER I

INTRODUCTION

This chapter is the early reviews for this project, explain is Student Attendance System through RFID and Bluetooth. Sub-chapters that will be discussed in this chapter including project background, problem that related to this project, objectives of this project, scopes of the project, project significance, expected output of this project and the conclusion of this chapter.

1.1 Project Background

Radio frequency identification (RFID) is the electromagnetic or electrostatic coupling in the RF portion of the electromagnetic spectrum is used to transmit signals. An RFID system consists of an antenna and a transceiver, which read the radio frequency and transfer the information to a processing device, and a transponder, or tag, which is an integrated circuit containing the RF circuitry and information to be transmitted.

Bluetooth is a short-range wireless technology that lets you connect computers, mobile phones, and handheld devices to each other and to the Internet. Bluetooth

technology eliminates the need for the cables that connect devices together. Bluetoothenabled devices connect wirelessly within a 10 m range.

Bluetooth and Wi-Fi have many applications setting up networks, printing, or transferring files. Wi-Fi is intended for resident equipment and its applications. The category of applications is outlined as WLAN, the wireless local area networks. Wi-Fi is intended as a replacement for cabling for general local area network access in work areas.

Bluetooth was intended for non-resident equipment and its applications. The category of applications is outlined as the wireless personal area network (WPAN). Bluetooth is a replacement for cabling in a variety of personally carried applications in any ambiance and can also support fixed location applications such as smart energy functionality in the home.

Wi-Fi uses the same radio frequencies as Bluetooth, but with higher power, resulting in a faster connection and better range from the base station. The nearest equivalents in Bluetooth are the DUN profile, which allows devices to act as modem interfaces, and the PAN profile, which allows for ad-hoc networking.

1.2 Problem Statement

With attendance system at this time, student's attendance is taken manually and is not a system. It is taken manually by using attendance sheet given by lecturer in class. If student's attendance is taken manually, there are some cases that student can cheat by asking their friends to tick or sign for them. This occurs because the students just want to fulfill the 80% of the attendance so that they can seat for the final examination at the end of the semester. Lecturer can't monitor for all students in the class and it is difficult for lecturer to record the attendance of students accurately and efficiently.

Lecturers are not able to keep track with the student's attendance during the class session. So, with this system, lecturers will be notifying by email or mobile phone via Bluetooth. The attendance list will be generated after the student swaps their matrix card to the RFID Reader which is a attached in every classes. In addition, manual attendance may not be reliable as email. It can be lost or torn up.

1.3 Objective

The main objectives of this project are summarized as below:

- i. To develop a student attendance.
- ii. This system uses Bluetooth and RFID technology to transmit data.
- iii. Developing a application in the mobile phone to receive data from a computer via Bluetooth.
- iv. To record the attendance of students in real time.
- v. This system can generate the report for attendance of students and send it via email to the lecturers after each lesson or lab session.

1.4 Scope

The scope of this project is to implement RFID and Bluetooth connection at the class room and laboratory. The system will be creating using vb.net and Net Beans IDE. Before that, the matrix card of the student will be registered first in the system. This system is use to record attendance of students by RFID and the data in computer will be send to mobile phone. In this system, the mobile phone can be used is the Nokia and Sony Ericsson with the support of JSR 82 API for Bluetooth and suitable to install the J2ME application.

1.5 Project Significance

These projects are system that integrated with RFID and Bluetooth. It helps students and the lecturer in the class. The student does need to do the records manually while the lecturer don't need to watch every time student fills in the record. This system benefits the lecturer when they want to check attendance list. They just have to connect mobile phone with the computer via Bluetooth and the data in computer will be sent to mobile phone. In addition, lecturers can check attendance list of students via email and print class attendance sheets when need.

1.6 Expected Output

The expected output is that the system will run smoothly. It also must working according to what have expected. The system should benefits the students and also the lecturer.

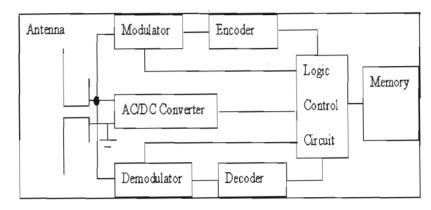
1.7 Conclusion

In conclusion, this chapter describes the background of this project. This system is use to take students attendance by RFID and the data will be sent to mobile phone using Bluetooth. The purpose of this system development is to take student attendance more efficient.

Next chapter will be discussing about the literature review and project methodology that will be used to implement this project.

C Universiti Teknikal Malaysia Melaka

CHAPTER II


LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction

This chapter explains about the technology to be used in this project. The technology used to develop this system is RFID and Bluetooth. RFID is an automatic identification that carries information around using radio wave. This technology is a tool to helps supply chain automation. It makes reading a data with easier and accurate. It also saves time, energy and manpower. Bluetooth is a wireless technology for creating personal networks operating in the 2.4 GHz unlicensed band, with a range of 10 meters. Networks are usually formed ad-hoc from portable devices such as mobile phone and laptops. This technology will be discussed further in this chapter.

2.2 Literature Review

2.2.1 Domain

I. Introduction of RFID

Figure 2.1 : Operation of the RFID.

Radio frequency identification (RFID) is a generic term that is used to describe a system that transmits the identity (in the form of a unique serial number) of an object or person wirelessly, using radio waves. It's grouped under the broad category of automatic identification technologies.

RFID is a method of remotely storing and retrieving data using devices called RFID tags. An RFID tag is a small object, such as a student card. RFID tags contain antennae to enable them to receive and respond to radio-frequency queries from an RFID transceiver.

RFID is in use all around us. If you have ever chipped your pet with an ID tag, used SmartTag through a toll booth, or paid for LRT using Touch 'n' GO, you've used RFID. In addition, RFID is increasingly used with biometric technologies for securities.

Unlike ubiquitous UPC bar-code technology, RFID technology does not require contact or line of sight for communication. RFID data can be read through the human body, clothing and non-metallic materials.

II. Introduction of Bluetooth

Bluetooth is to provide a universal short-range wireless capability. Using the 2.4 GHz band, available globally for unlicensed low-power uses, two Bluetooth devices within 10 m of each other can share up to 720 Kbps of capacity. Bluetooth is intended to support an open-ended list of applications, including data (such as schedules and telephone numbers), audio, graphics, and even video. Bluetooth is designed to operate in an environment of many users. Up to eight devices can communicate in a small network called a piconet. Ten of these piconets can coexist in the same coverage range of the Bluetooth radio. To provide security, each link is encoded and protected against eavesdropping and interference.

i. Using the Java APIs for Bluetooth Wireless technology

The Java APIs for Bluetooth is a Java ME specification for APIs that allow Java midlets to use Bluetooth on supporting devices. The specification was developed under the Java Community Process as JSR 82.

This specification was produced by the Expert Group formed to define the Java APIs for Bluetooth wireless technology. The following companies, listed in alphabetical order, are members of this expert group is Extended Systems, IBM, Mitsubishi Electric, Motorola (specification lead), Newbury Networks, Nokia, Parthus Technologies, Research in Motion, Rococo Software, Sharp Laboratories of America, Sony Ericsson Mobile Communications, Smart Fusion, Smart Network Devices, Sun Microsystems, Symbian, Telecordin, Vaultus, Zucotto.

The Bluetooth stack comprises a software stack that interfaces with a firmware stack, as Figure 2.2 illustrates:

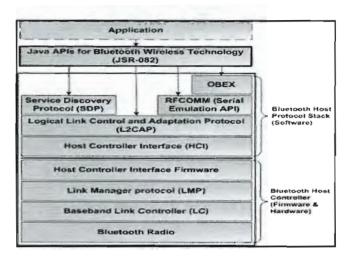


Figure 2.2: The Bluetooth stack

A Bluetooth-enabled application can be either a server or a client a producer of services or a consumer or it can behave as a true peer-topeer endpoint by exposing both server and client behavior. Figure 2.3 illustrates an application's Bluetooth-specific use cases:

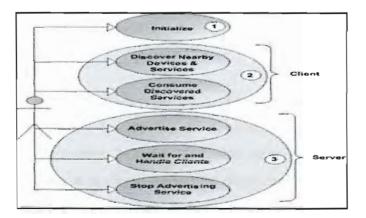


Figure 2.3: Bluetooth-specific