PLC'S INTERFACE BETWEEN PNEUMATICS AND PIC WITH SEVERAL APPLICATIONS

SITI FATIMAH BINTI SULAIMAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PLC'S INTERFACE BETWEEN PNEUMATICS AND PIC WITH SEVERAL APPLICATIONS

SITI FATIMAH BINTI SULAIMAN

This report is submitted in partial fulfillment on the requirements for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > April 2009

		3
	UNIVER	STI TEKNIKAL MALAYSIA MELAKA
MALAVSIA BARLANA	FAKULTI KEJU	RUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER
ILLEST		RANG PENGESAHAN STATUS LAPORAN
AINN	1	PROJEK SARJANA MUDA II
	PLC's INTERFACE E	BETWEEN PNEUMATICS AND PIC
Tajuk Projek	WITH SEVERAL APPI	LICATIONS
Sesi	2008/2009	
Pengajian	2000/2009	
Saya <u>SITI FAT</u>	<u>TIMAH BINTI SULAI</u>	MAN mengaku membenarkan Laporar
Projek Sarjana Mu	uda ini disimpan di Per	pustakaan dengan syarat-syarat kegunaar
seperti berikut:		
1. Laporan adalah ha	kmilik Universiti Teknikal M	Ialaysia Melaka.
2. Perpustakaan dibe	narkan membuat salinan untu	ık tujuan pengajian sahaja.
3. Perpustakaan dibe	narkan membuat salinan lapo	oran ini sebagai bahan pertukaran antara institusi
pengajian tinggi.		
4. Sila tandakan ($$):	
		maklumat yang berdarjah keselamatan atau
SULIT*	Kepentingan M RAHSIA RASI	alaysia seperti yang termaktub di dalam AKTA MI 1972)
	(Mengandungi	maklumat terhad yang telah ditentukan oleh
TERHA	AD* organisasi/bada	n di mana penyelidikan dijalankan)
	TERHAD	
	IEKHAD	
		Disahkan oleh:
(TANDATAN	GAN PENULIS)	(COP DAN TANDATANGAN
	·	PENYELIA)
Alamat Tetap : H90, Jh	n Karvawan 11	
-	uru, Jln Gambang,	
25150	Kuantan,	
Pahan	g.	
Tarikh : 29 April 2009		Tarikh : 29 April 2009
C) u	Iniversiti Teknikal Malaysia	a Melaka

Γ

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature	:	
Author	:	Siti Fatimah Binti Sulaiman
Date	:	29 April 2009

"I hereby declare that I have read this report and in my opinion thsi report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours."

Signature	:	
Supervisor's Name	:	Farid Arafat Bin Azidin
Date	:	29 April 2009

To my beloved father and mother

ACKNOWLEDGEMENT

I am indebted to my supervisor Mr. Farid Arafat Bin Azidin, for his continuous guidance, encouragement and patience in the preparation of this project.

My sincere appreciation also extends to my friends, Amar Muhamad and Norasushila Saleh, for their continuous support and help. Finally, I am grateful thanks all my family members.

Siti Fatimah Binti Sulaiman

ABSTRACT

This adapter was designed to become as an interface between Programmable Logic Controllers (PLC) OMRON and pneumatics trainer; where several applications are also adapted in this project. The absence of interfacing between PLC OMRON and pneumatics trainer creates a constant difficulty among Universiti Teknikal Malaysia Melaka (UTeM) students especially during lab sessions. At present, only a button or switch could actuate a pneumatic to compress air into the pneumatics valve. This feature of the equipment is not practical for the students as well as the university since it must be handled manually. To achieve the project objectives in order to ensure a successful outcome in the project, several ways have been taken such as defined the voltage specification (input and output) via adapter, PLC OMRON and pneumatics trainer. Besides that, the ladder diagram is designed and simulated using CX-Programmer software in order to ensure the output produced at pneumatics trainer is same as the simulation. At the end of this project, the adapter will be able to receive a 24V input from the PLC trainer. It will then process the input into either a 24V pneumatics trainer or a 5V PIC. The adapter will also transfer the PLC's program to the acquired trainer; performing tasks such as a simple sequence control concept, automatic stairway light, stamping machine and traffic light. Via this project also, the wiring of the system is also reduced compared before the existence of these produced adapter. At the end of this project, the interfacing of PLC and PIC is also proven.

ABSTRAK

Alat penyesuai yang direkabentuk ini berfungsi sebagai penghubung di antara Programmable Logic Controller (PLC) OMRON dan pneumatic trainer; di mana beberapa aplikasi tertentu turut dikaitkan menerusi projek ini. Ketiadaan alat penghubung untuk menghubungkann PLC OMRON dan pneumatic trainer seringkali menimbulkan kesulitan di kalangan pelajar-pelajar Universiti Teknikal Malaysia Melaka (UTeM) terutamanya ketika sesi makmal dijalankan, kerana buat masa ini, pemampatan udara ke dalam injap pneumatik hanya dilakukan secara manual dengan cara menekan butang atau suis yang terdapat di pneumatic trainer. Bagi memastikan tujuan utama projek ini tercapai, beberapa langkah telah diambil; antaranya dengan menentukan spesifikasi voltan keluar dan masuk melalui alat penyesuai, PLC OMRON dan juga pneumatic trainer. Di samping itu juga, rekabentuk dan simulasi ladder diagram juga telah dilakukan menggunakan perisian CX-Programmer bagi memastikan keluaran pada pneumatik adalah sama dengan keluaran yang diperolehi melalui simulasi. Kesudahannya, alat penyesuai yang direka ini berupaya untuk menerima masukan voltan dari PLC OMRON sebanyak 24V. Voltan masukan ini kemudiannya akan diproses kepada 24V pneumatic trainer atau 5V Programmable Interface Controller (PIC) trainer. Pada masa yang sama, alat penyesuai ini juga akan menghantar program-program dari PLC kepada pneumatic trainer bagi melaksanakan aplikasi-aplikasi seperti konsep kawalan ringkas, lampu tangga automatik, mesin penghentak dan juga lampu isyarat. Melalui projek ini juga, penggunaan wayar yang terlalu banyak dan berselirat juga dapat dikurangkan. Di akhir pelaksanaan projek ini, perantaraan antara PLC OMRON dan PIC juga turut dibuktikan.

TABLE OF CONTENTS

CHAPTER TOPIC

PAGE

10

TITLE	i
REPORT STATUS VERIFICATION FORM	ii
DECLARATION	iii
SUPERVISOR VERIFICATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENTS	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xvi
LIST OF APPENDICES	xvii

I INTRODUCTION

1.1	Background	1
1.2	Objectives	2
1.3	Problem Statement	2
1.4	Scope of Work	3
1.5	Project Significant	3
1.6	Project Methodology	4
1.7	Report Structure	6

II LITERATURE REVIEW

2.2	Progra	ammable Logic Controller (PLC)	9
	2.2.1	The Role of the Programmable Logic	11
		Controller (PLC)	
		2.2.1.1 Input Devices	12
		2.2.1.2 Output Devices	14
	2.2.2	Programmable Controller Control Panel	
		and Their Advantages	16
		2.2.2.1 Advantages of PLC Control Panel	16
	2.2.3	Programmable Controller Applications	17
	2.2.4	PLC Ladder Diagram Programming	17
		2.2.4.1 Anatomy of Ladder Diagram	18
		2.2.4.2 Types of Instructions	18
		2.2.4.3 Function Block Instruction	20
		2.2.4.4 Programming Console	21
2.3	GRAF	FCET	25
	2.3.1	GRAFCET Graphical Function Chart	25
		Programming	
	2.3.2	Sequential Function Chart Language	25
	2.3.3	Transition Sequential Chart Program Symbols	26
	2.3.4	Basic Rules For Standard Sequential Function Chart	
		Programs	27
2.4	Pneun	natic Systems	28
	2.4.1	Directional Control Valves	29
	2.4.2	Valve Symbols	30
	2.4.3	Valve Mechanisms	30
	2.4.4	Cylinder Control	31
	2.4.5	Controlling Cylinder Speed	32
	2.4.6	Simple Control Circuit	33
		2.4.6.1 Logic Functions	33
	2.4.7	Pneumatics Applications	35
2.5	Progra	ammable Interface Controller (PIC)	35
	2.5.1	Applications of PIC	38

III PROJECT METHODOLOGY

3.1	Phases	s of Method and Approach	41
	3.1.1	First Phase (Literature Review)	41
	3.1.2	Second Phase (Design and Simulation)	43
	3.1.3	Third Phase (Implementation)	45
	3.1.4	Fourth Phase (Thesis Writing)	45

IV RESULTS AND DISCUSSION

4.1	Project Functional Block Diagram	46
	4.1.1 Result	47
4.2	Adapter Circuit's (24V to 24V/5V) Design and	
	Simulation of Using Multisim	48
4.3	PIC LCD Display Circuit	51
4.4	Ladder Diagram Design and Simulation	
	Using CX-Programmer	53
	4.4.1 First Application : A Simple Sequence Control	
	Concept	53
	4.4.2 Second Application : Automatic Stairway Light	60
	4.4.3 Third Application : Automatic Stamping Machine	66
4.5	GRAFCET Design and Simulation Using AUTOMGEN	74
	4.5.1 First Application : A Simple Sequence Control	
	Concept	74
	4.5.2 Second Application : Automatic Stairway Light	74

V CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	75
5.2	Recommendations	76

REFERENCES

APPENDIX A	78
APPENDIX B	86
APPENDIX C	90
APPENDIX D	92

77

LIST OF TABLES

NO TITLE

PAGE

2.1	Programming Console Modes	23
2.2	Programming Console Basic Instructions	23
4.1	Possible Output Display	51
4.2	Mnemonic Codes for the First Application	59
4.3	Mnemonic Codes for the Second Application	65
4.4	Mnemonic Codes for the Third Application	73

LIST OF FIGURES

PAGE

1.1	Methodology's Flowcharts	4
2.1	PLC Block Diagram	10
2.2	PLC Input Devices	12
2.3	PLC OMRON Training Kit	13
2.4	Toggle Switches on PLC OMRON Training Kit	13
2.5	PLC Output Devices	14
2.6	PLC OMRON Training Kit Output Devices	15
2.7	Typical PLC Control Panel	16
2.8	PLC OMRON Programming Console	21
2.9	Programming Console Connection Architecture	22
2.10	Programming Console Keys	22
2.11	Compressed Air	28
2.12	Air Compressor Unit	29
2.13	Pneumatic Valve	30
2.14	Pneumatic Valve Symbols	31
2.15	Single Acting Cylinder	31
2.16	Double Acting Cylinder	32
2.17	Flow Control Valve and its Symbol	33
2.18	Two Valves in Series	34
2.19	Two Valves in Parallel	34
2.20	Basic Elements of Microprocessor	36
3.1	Methodology's Flowchart (2)	40
3.2	Project Gantt chart (Project Planning)	42
4.1	Project Functional Block Diagram	46
4.2	The Project	47
4.3	View of Overall C Universiti Teknikal Malaysia Melaka	47

4.4	Adapter Circuit (24V to 24V/5V) Using Multisim	48
4.5	SPDT Switches	49
4.6	Voltage Regulator Symbol and Its Physical Diagram	49
4.7	Regulator Circuit	50
4.8	The Produced Adapter	50
4.9	The Produced PIC LCD Display	51
4.10	PIC Pins	52
4.11	No Pin Is Selected (Output :)	52
4.12	When Pin RC4 Is Selected (Output : 5)	52
4.13	A Simple Sequence Control Concept	53
4.14	Automatic Stairway Light	60
4.15	Automatic Stamping Machine	66

LIST OF ABBREVIATIONS

-	Programmable Logic Controller
-	Universiti Teknikal Malaysia Melaka
-	Programmable Interface Controller
-	National Electrical Manufacturing Association
-	Central Processing Unit
-	Read-Only Memory
-	Random Access Memory
-	Erasable Programmable Read Only Memory
-	Electrically Erasable Programmable Read Only Memory
-	Arithmetic Logic Unit
-	Reduced Instruction Set Computer
-	Single Pole Double Throw

LIST OF APPENDICES

NO TITLE

PAGE

А	LM7805 Datasheet	78
В	SPDT Datasheet	86
С	PIC LCD Display Circuit Diagram	90
D	PIC Programming Codes	92

CHAPTER I

INTRODUCTION

1.1 Background

A Programmable Logic Controller (PLC) and pneumatics are two most different instruments. A Programmable Logic Controller (PLC) is a device that was invented to replace the necessary sequential relay circuits for machine control. The PLC works by looking at its inputs and depending upon their state, turning on/off its outputs. The user enters a program, usually via software, that gives the desired results.

While in pneumatic systems, force is produced by air pressure acting on the surface of a piston or valve. It is to be noted here that the pneumatic tools, or the air tools as they are generally called as, can perform many difficult tasks that cannot be accomplished by other types of tools available.

This project presents the design of an adapter as one tool to interface between both PLC and pneumatics. At present, in Universiti Teknikal Malaysia Melaka (UTeM) especially, PLC and pneumatics are used separately. To activate the pneumatics for example, button or switch need to be pressed first in order to compress the air into the pneumatic valve and make the cylinder move out. The same thing happened in the used of PLC, where the output produced by PLC's is too limited; output is displayed on the trainer only. These situations seem not practically and at the same time give harm to the students itself because they can't apply both instruments (PLC and pneumatics) as good as possible. With the existence of this designed adapter, student's knowledge will be gained because several applications involving the use of PLC and pneumatics are also included in this project. At the end of this project, this produced adapter will be tested whether it is able to interface with a Programmable Interface Controller (PIC).

1.2 Objectives

- 1.2.1 To design an adapter between PLC OMRON and pneumatic trainer with several applications such as a simple sequence control concept, automatic stairway light, stamping machine, etc.
- 1.2.2 To overcome the problem of interfacing absence between PLC and pneumatic trainer.
- 1.2.3 To ensure the produced adapter will allow a 24V output from PLC OMRON to convert into either 24V pneumatic trainer or 5V PIC.
- 1.2.4 To study the concept of GRAFCET model and PLC programming.
- 1.2.5 To approach how to link the software (programming) onto the hardware.
- 1.2.6 To study and understand the basic concepts of the pneumatic systems operation.
- 1.2.7 To test whether the produced adapter is able to interface with a PIC.

1.3 Problem Statement

- 1.3.1 The absence of interfacing between PLC OMRON and pneumatic trainer creates a constant difficulty among UTeM students especially during lab sessions.
- 1.3.2 At present, only a button or switch could actuate a pneumatics to compress air into the pneumatic valve.
- 1.3.3 This feature of the equipment is not practical for the student as well as the university since it must be handled manually.
- 1.3.4 Students itself can't apply both instruments (PLC and pneumatics) as good as possible.

1.4 Scopes of Work

This project primarily covered on the several parts, which are:

- 1.4.1 The design of adapter (24V \rightarrow 24V/5V) using Multisim software.
- 1.4.2 The study of a Programmable Logic Controller (PLC).
- 1.4.3 The design of ladder diagram using CX-Programmer software.
- 1.4.4 The design of GRAFCET (a sequential function chart) using AUTOMGEN 7.101 software.
- 1.4.5 The study of pneumatic systems basic operation.
- 1.4.6 The study of a Programmable Interface Controller (PIC).

All the parts above will function in one system to receive and process voltage input and produces a converted output (pneumatics or PIC).

1.5 Project Significant

- 1.5.1 Overcome the problem of interfacing absence between PLC and pneumatic trainer.
- 1.5.2 Makes teaching and learning process in UTeM becomes more practical.
- 1.5.3 As an instrument for UTeM's students in future study purposes such as an experiments and researches.
- 1.5.4 Will be tested whether it is able to interface with a Programmable Interface Controller (PIC).

1.6 Project Methodology

To ensure a successful outcome in the project, the project objectives shall be achieved first. The flow chart below shows the method that will be done step by step until the goal of the project is achieved.

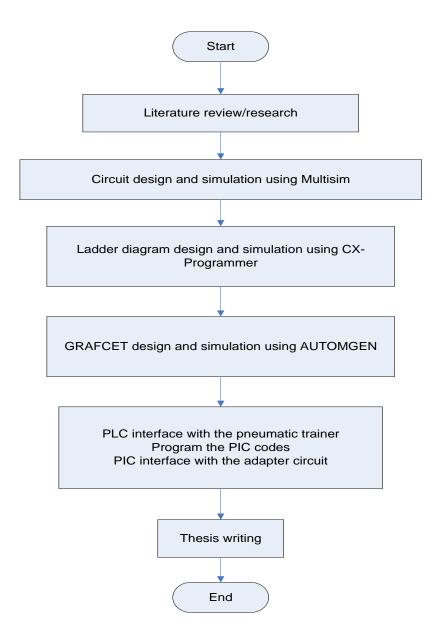


Figure 1.1 Methodology's Flowchart

There are four phases involved during a performance of this project:

- i) First Phase : Literature Review
- ii) Second Phase : Design and Simulation
- iii) Third Phase : Implementation
- iv) ^FC Universiti Teknikal Malaysia Melaka

- i) <u>First Phase : Literature Review</u>
 - Gathered the information about the project via internet, journals, magazines, published work and reference books.
 - Study of the software implementation (Multisim, CX-Programmer, AUTOMGEN, PIC C Compiler, Proteus 7 Professional and WinPic-PIC Programmer).
 - Make research to know more detail about an adapter, PLC and pneumatic systems.

ii) <u>Second Phase : Design and Simulation</u>

- Analyzed and designed circuit for an adapter which is able to receive a 24V input and process it into either 24V/5V.
- Used Multisim software to simulate an adapter circuit.
- Used CX-Programmer software to simulate the ladder diagram.
- Used AUTOMGEM software to simulate the GRAFCET.
- Used PIC C Compiler, Proteus 7 Professional and WinPic-PIC Programmer software to program and simulate the PIC codes.
- Used Proteus 7 Professional to design a PCB layout for the adapter circuit and PIC LCD display circuit.
- iii) <u>Third Phase : Implementation</u>
 - Directly connected the simulation output produced from the PLC trainer to the pneumatic trainer. In this case, there's no need to press the button to make the pneumatics cylinder actuated.
 - Directly connected the output from the adapter circuit to the PIC LCD display circuit in order to display the output conditions.
- iv) Fourth Phase : Thesis writing
 - Stated all the ideas concentrated regarding to this project.
 - Shows flow of ideas during the implementation of this project.
 - Stated the project conditions (from the beginning until the end of the project).

Details explanation of the project methodology will be explained in Chapter III (Project Methodology).

🔘 Universiti Teknikal Malaysia Melaka

1.7 Report Structure

Summarization of each chapter included in the report:

- i) Abstract
- ii) Chapter I : Introduction
- iii) Chapter II : Literature Review
- iv) Chapter III : Project Methodology
- v) Chapter IV : Results and Discussion
- vi) Chapter V : Conclusion and Recommendation
- vii) References
- viii) Appendices

i) <u>Abstract</u>

Abstract means the whole report in miniature. In the project abstract, the main project objectives, the methods used and the summarization of the most important results are stated. Besides, a major conclusion and the project significance are also stated at the end of the project abstract.

ii) <u>Chapter I : Introduction</u>

This first chapter is more on the general overview of the project. In this chapter, the background of the problem and the emergence of the project are stated first. Besides, the project objectives, scope of project and the methods used are also included.

iii) <u>Chapter II : Literature Review</u>

This second chapter discusses the background of study related to the project. This chapter consists of the evidence with the broad (e.g. books, internet, lecture notes etc) and focus (previous PSM, thesis, journal papers etc) areas of the study. In this chapter, the trend, direction and research issues are also identified. It can be said that this chapter is more on the evidence of not repeating what others have done.