PRODUCT DESIGN EVALUATION OF LUCAS HULL DFMA METHOD

MOHD NAFIS BIN MOHAIZI

A report submitted in partial fulfillment of the requirement for the award of the degree of Bachelor of Mechanical Engineering (Design and Innovation)

> Faculty of Mechanical Engineering University Technical Malaysia Melaka

> > March 2008

I herby declare that I have read this thesis and in my opinion this report is sufficient in terms of scope and quality for the award of the Bachelor of Mechanical Engineering (Design and Innovation)

Signature:Name of supervisor: Mr. Mohd Ruzi Bin Haji HarunDate:

I declare that this report entitle "PRODUCT DESIGN EVALUATION OF LUCAS HULL DFMA METHOD" is the result of my own research except as cited in the references. The report has not been accepted of any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Author	: Mohd Nafis Bin Mohaizi
Date	:

ACKNOWLEDGEMENTS

Alhamdulillah with His Mercy and Blessing, this project is finally completed successfully. Firstly, I would like to express my deepest gratitude and appreciation to project's supervisor, Mr. Mohd Ruzi Bin Haji Harun, Faculty of Mechanical Engineering, 'Universiti Teknikal Malaysia Melaka' (UTeM), for his tremendous inspiration, opinion, advice, help and unending guidance.

Lastly, I would like to express my sincere appreciation to my parents, Mr. Mohaizi Bin Mohamad and Mrs. Kamariah Bt. Ibrahim, friends and those who gives solid support and help directly or indirectly.

iii

ABSTRACT

Product Design Evaluation of Lucas Hull DFMA Method represents the action of evaluate and analyze on every part of product by using the analysis method i.e. functional analysis, handling or also called feeding analysis, fitting analysis, and manufacturing analysis. The main purpose of Design For Manufacturing and Assembly (DFMA) method in design process is to reduce part count for product and make the assembly process easier. It will gives a lots of benefit, among others, reduce the assembly cycle time, cost and Time To Market (TTM). The Lucas DFMA uses two types of analysis application, manual application and software application. The TeamSET software and the Visio Standard software are use for software application. The TeamSET software, version 3.1 is use to analyze every single part in a product. Meanwhile, the Visio Standard software is use to edit and print the result from TeamSET software. This project also includes sample case study, which is to show on how the application of Lucas DFMA can be applied on part count reduction.

ABSTRAK

'Product Design Evaluation Lucas Hull DFMA Method' mewakili tindakan menilai dan menganalisis setiap bahagian produk dengan menggunakan cara menganalisis seperti analisis fungsian, analisis pengendalian atau juga dipanggil analisis penyuapan, analisis sesuai, dan analisis pembuatan. Tujuan utama menggunakan kaedah reka bentuk untuk pembuatan dan pemasangan (DFMA) dalam proses reka bentuk adalah untuk mengurangkan kiraan bahagian dan memudahkan proses pemasangan produk. Ia memberi banyak kebaikan, antaranya mengurangkan masa kitar pemasangan, kos dan Masa Untuk Pasaran (TTM). Lucas DFMA menggunakan dua kaedah aplikasi, aplikasi manual dan aplikasi perisian. Perisian TeamSET dan perisian Visio Standard digunakan untuk aplikasi perisian. Perisian TeamSET, versi 3.1 digunakan untuk menganalisis setiap bahagian produk. Manakala, perisian Visio Standard digunakan untuk menyunting dan mencetak hasil daripada perisian TeamSET. Projek ini juga mengandungi kes kajian sampel untuk menunjukkan bagaimana aplikasi Lucas DFMA boleh digunakan terhadap pengurangan bilangan bahagian produk.

TABLE OF CONTENTS

CHAPTER	TITL	LE	PAGE
	ACK	NOWLEDGEMENT	iii
	ABS	TRACT	iv
	ABST	TRAK	v
	CON	TENTS	vi
	LIST	OF TABLES	xi
	LIST	OF FIGURES	xiv
	NOM	IENCLATURE	xvii
	LIST	OF APPENDICES	xviii
1	INTE	RODUCTION	
	1.0	Background	1
	1.1	Problem Statements	2
	1.2	Title of Project	3
	1.3	Objective of Project	3
	1.4	Scopes of Project	3
	1.5	Summary	4
2	LITE	ERATURE REVIEW	
	2.0	Introduction	5
	2.1	Assembly Definition	6
	2.2	Assembly History	6
	2.3	Assembly Problem	8

2.4	Desig	n for Manufacturing and	8
	Assen	nbly (DFMA)	
	2.4.1	Reason Using DFMA Method	9
	2.4.2	DFMA Principles	9
	2.4.3	Benefits of DFMA	10
	2.4.4	Problem in DFMA	11
2.5	DFM	A Methodologies	12
	2.5.1	Boothroyd Dewhurst DFMA	12
		Method	
	2.5.2	Hitachi Assembleability	15
		Evaluation Method	
	2.5.3	Hitachi Assembly Reliability	18
		Evaluation Method	
	2.5.4	Westinghouse DFA Calculator	20
	2.5.5	Toyota Ergonomics Evaluation	21
		Method	
	2.5.6	Sony DFA Method	22
	2.5.7	Lucas Hull DFMA Method	23
2.6	Summ	nary	23

3

METHODOLOGY

3.0	Introduction	24
3.1	Project Planning	24
3.2	Project Literature Review Methodology	26
3.3	Lucas Hull DFMA Methodology	27
3.4	Design Process Methodology	28
3.5	Summary	29

4 LUCAS HULL DFMA METHOD

4.0	Introduction	30
4.1	Lucas Hull DFMA Histories	31

C Universiti Teknikal Malaysia Melaka

4.2	Lucas	Hull DFMA Method Based	31
4.3	Lucas	Hull DFMA Procedures	31
4.4	Manua	al Application	33
	4.4.1	Functional Analysis	33
	4.4.2	Handling Analysis	35
	4.4.3	Fitting Analysis	38
	4.4.4	Manufacturing Analysis	42
	4.4.5	Assembly Sequence Flowchart	55
4.5	Softwa	are Application	57
	4.5.1	Start TeamSET Software V3.1	58
	4.5.2	System Function	58
		4.5.2.1 Open Database	58
		4.5.2.2 Creating Database	60
		4.5.2.3 Deleting Database	61
		4.5.2.4 System Variables	62
		4.5.2.5 Materials Cost	63
		4.5.2.6 MA Calibration	63
		4.5.2.7 Company Specific Process	64
	4.5.3	Functional Analysis	65
	4.5.4	Handling Analysis	66
	4.5.5	Fitting Analysis	68
	4.5.6	Manufacturing Analysis	69
	4.5.7	TeamSET Result	70
	4.5.8	Visio Standard	72
4.6	Summ	nary	73

PRODUCT DESIGN DEVELOPMENT

5

5.0	Introduction	74
5.1	Product Case Study Analysis	74
	5.1.1 Product Design	75
	5.1.2 Product Specification	76

	5.1.3	Product Structure Tree	76
	5.1.4	Skill 2207 Lucas Analysis Results	77
	5.1.5	Product Weaknesses	78
5.2	Produ	ct Specification	79
	5.2.1	Mission Statement	79
	5.2.2	Customer Selection Matrix	81
	5.2.3	Customer Statement	81
	5.2.4	Product Hierarchy	83
	5.2.5	Product Design Specification	85
5.3	Conce	ptual Design	88
	5.3.1	Concept Generation	89
	5.3.2	Concept Selection	98
		5.3.2.1 Concept Screening	98
		5.3.2.2 Concept Scoring	101
5.4	Final	Product Design Specification	105
5.5	Geom	etrical Design	105
5.6	New I	Design Analysis	106
	5.6.1	New Design Product Structure Tree	107
	5.6.2	Design Change Summary	107
	5.6.3	New Design Lucas Hull DFMA Analysis	108
5.7	Summ	nary	109

6

DISCUSSION

6.0	Introduction	110
6.1	Assembly Process	110
	6.1.1 Manual Assembly Process	111
	6.1.2 Automatic Assembly Process	112
	6.1.3 Robotic Assembly Process	112
6.2	Analysis in Lucas Hull DFMA Method	113
6.3	Results for Sample Case Study	114
6.4	Selection of Customer Matrix	118

6.5	Needs Implementations	119
6.6	Results for Case Study	120
6.7	Summary	121
CON	CLUSION AND RECOMMENDATION	
7.0	Conclusion	122
7.1	Recommendation	124
REFE	RENCES	125
APPE	NDICES	126

7

LIST OF TABLES

NO.	TITLE	PAGE
2.1	Part that can be grasped and manipulated	12
	with one bare hand	
	(Source: Mechanical Assemblies, 2004)	
2.2	Part that be lifted with one hand but require	13
	two hand to manage	
	(Source: Mechanical Assemblies, 2004)	
2.3	Part inserted but not secured immediately or	14
	secured by snap fit	
	(Source: Mechanical Assemblies, 2004)	
2.4	Part inserted but not screwed immediately by	14
	power screwdriver	
	(Source: Mechanical Assemblies, 2004)	
2.5	Separated operation times for solid part already	14
	in place	
	(Source: Mechanical Assemblies, 2004)	
2.6	Examples of AEM symbols and penalty score	16
	(Source: Mechanical Assemblies, 2004)	
2.7	Examples of assembleability evaluation and	17
	Improvement	
	(Source: Mechanical Assemblies, 2004)	
4.1	Functional analysis result using manual application	34

4.2	Handling analysis index	36
	(Source: www.dfmlucas.com, 2006)	
4.3	Sample case study handling analysis result	37
4.4	Fitting analysis index	39
	(Source: www.dfmlucas.com, 2006)	
4.5	Sample case study fitting analysis result	41
4.6	Cylindrical part envelope	44
	(Source: www.dfmlucas.com, 2006)	
4.7	Prismatic part envelope	45
	(Source: www.dfmlucas.com, 2006)	
4.8	Flat or thin walled section envelopes	46
	(Source: www.dfmlucas.com, 2006)	
4.9	Complexity (Cc)	47
	(Source: www.dfmlucas.com, 2006)	
4.10	Basic processing cost per quantity (Pc)	48
	(Source: TeamSET V3.1 database, 1998)	
4.11	Limiting section in millimeters (Cs)	49
	(Source: www.dfmlucas.com, 2006)	
4.12	Material Suitability (Cmp)	50
	(Source: www.dfmlucas.com, 2006)	
4.13	Waste coefficient (Wc)	51
	(Source: www.dfmlucas.com, 2006)	
4.14	Material cost selection (Cmt)	52
	(Source: TeamSET V3.1 database, 1998)	
4.15	Tolerance (Ct) for machine process	53
	(Source: www.dfmlucas.com, 2006)	
4.16	Surface finish (Cf) for machine process	53
	(Source: www.dfmlucas.com, 2006)	
4.17	Sample case study manufacturing analysis result	55
4.18	Process in assembly Sequence Flowchart	56
4.19	Explanation of the process	57

4.20	Symbol for Assembly Sequence Flowchart	68
5.1	Skill 2207 bill of materials	75
5.2	Skill 2207 Lucas Analysis result	78
5.3	Customer selection matrix	81
5.4	Customer needs and needs statement	82
5.5	Metrics for CSD	85
5.6	Benchmarking information	86
5.7	Benchmarking data based on needs satisfaction	87
5.8	Target specification	88
5.9	Concept screening matrix	98
	(Source: Product Design and Development, 2003)	
5.10	Project concept screening matrix	100
5.11	Concept scoring matrix	101
	(Source: Product Design and Development, 2003)	
5.12	Project concept scoring matrix	103
5.13	Final project concept scoring matrix	104
5.14	Final product design specification	105
5.15	New design bill of materials	106
5.16	Design change summary	108
5.17	New design Lucas Analysis result	109
6.1	Current stapler analysis result	114
6.2	Current stapler analysis result summary	115
6.3	New stapler design analysis result	116
6.4	New stapler design analysis result summary	117
6.5	Stapler analysis result summary comparison	117
6.6	Cordless screw driver analysis result summary	120
	comparison	

LIST OF FIGURES

NO.	TITLE	PAGE
2.1	Comparison of assembly process due to cost	11
	and production volume	
	(Source: www.design for assembly.com, 2004)	
2.2	Hitachi assembly reliability method	19
	(Source: Mechanical Assemblies, 2004)	
2.3	Westinghouse DFA calculator	20
	(Source: Mechanical Assemblies, 2004)	
2.4	Exploded view drawing of Sony Walkman chassis	22
	(Source: Mechanical Assemblies, 2004)	
3.1	Project flow chart	25
3.2	Project literature review methodology	26
3.3	Lucas Hull DFMA methodology	27
3.4	Design process methodology	28
4.1	Lucas Hull DFMA procedures	32
4.2	Manual manufacturing analysis procedures	43
4.3	Sample case study Assembly Sequence Flowchart	56
4.4	TeamSET V3.1 main screen	58
	(Source: TeamSET V3.1 software, 1998)	
4.5	Open database	59
	(Source: TeamSET V3.1 software, 1998)	
4.6	Open list database	59
	(Source: TeamSET V3.1 software, 1998)	

4.7	Open screen completed	60
	(Source: TeamSET V3.1 software, 1998)	
4.8	Open database last screen	60
	(Source: TeamSET V3.1 software, 1998)	
4.9	Create database dialogue	61
	(Source: TeamSET V3.1 software, 1998)	
4.10	Delete database dialogue	61
	(Source: TeamSET V3.1 software, 1998)	
4.11	Confirmation dialogue	62
	(Source: TeamSET V3.1 software, 1998)	
4.12	System variable dialogue	62
	(Source: TeamSET V3.1 software, 1998)	
4.13	Material cost dialogue	63
	(Source: TeamSET V3.1 software, 1998)	
4.14	Manufacturing analysis calibration dialogue	64
	(Source: TeamSET V3.1 software, 1998)	
4.15	Company specific process dialogue	64
	(Source: TeamSET V3.1 software, 1998)	
4.16	Functional analysis dialogue	65
4.17	Handling analysis dialogue	67
4.18	Fitting analysis dialogue (Insertion process)	69
4.19	Manufacturing analysis dialogue	70
4.20	Sample case study analysis summary	71
4.21	Sample case study Assembly Sequence Flow Chart	71
	using TeamSET V3.1 software	
4.22	Sample case study layout using Visio Standard software	72
5.1	Skill 2207 structure tree	77
5.2	Cordless screwdriver mission statement	80
5.3	Five step concept generation method	90
	(Source: Product Design and Development, 2003)	

5.4	Planetary gear	91
	(Source: http://web.ncf.ca/ch865/english/planetary.html)	
5.5	New planetary concept design	92
5.6	Concept 1's design	93
5.7	Concept 1's part location	93
5.8	Concept 2's design	94
5.9	Concept 2's part location	94
5.10	Concept 3's design	95
5.11	Concept 3's part location	95
5.12	Concept 4's design	96
5.13	Concept 4's part location	96
5.14	Concept 5's design	97
5.15	Concept 5's part location	97
5.16	New design product structure tree	107
6.1	Lead user matrix	118
6.2	Users matrix	118
6.3	Target segment	119
6.4	Needs implementations rating	120

xvi

NOMENCLATURE

ASF	Assembly Sequence Flow Chart
CAD	Computer Aided Design
CSD	Cordless Screwdriver
DFA	Design For Assembly
DFM	Design For Manufacture
DFMA	Design For Assembly and Manufacturing
PLC	Product Life Cycle
PSM	'Projek Sarjana Muda'
TTM	Time To Market

APPENDICES

NO. TITLE

Appendix 1	PSM 1 Gantt Chart
Appendix 2	PSM 2 Gantt Chart
Appendix 3	Current stapler design
Appendix 4	Skill 2207 CSD exploded drawing
Appendix 5	Skill 2207 Lucas Analysis worksheet
Appendix 6	Survey form
Appendix 7	New CSD design exploded drawing
Appendix 8	New CSD design assembly drawing
Appendix 9	Back body drawing
Appendix 10	Front body drawing
Appendix 11	Battery pack drawing
Appendix 12	Planet gear drawing
Appendix 13	Driver drawing
Appendix 14	RS380S Motor drawing
Appendix 15	New CSD design picture
Appendix 16	New CSD design Lucas Analysis worksheet
Appendix 17	New stapler design

CHAPTER 1

INTRODUCTION

1.0 BACKGROUND

The project divided into three categories, design project, technical/ concept/ method analysis and case study. The first category is design project should be base on certain design, method and finally could end with new product or design that have new good features, part reduction and follow all the specification. The second category is technical and concept analysis that need to do by the students on their own with advice from the supervisor and the final category is the case study project is more on research related to the topics and product case study. All these three categories will be used until the project is done.

By the end of this project, student will comes with the solution of the problem and come out with the new design of product. This final year project title is 'Product Design Evaluation of Lucas Hull DFMA Method'. Therefore, by the end of this project, the project must come out with new product with less part, low manufacturing cost and new product design should be simple with high quality and reliability.

This project contains two case study. The first sample case study will be used as an example for the Lucas Hull DFMA analysis and the second case study will be used as project's case study.

1.1 PROBLEM STATEMENTS

Before the Design for Manufacturing and Assembly (DFMA) exists, the design engineer uses the traditional design method to develop the new product. A few problems occur and this problem is the factor to use DFMA method in design process especially Lucas Hull DFMA method as stated below:

- There are no methodologies in design process that can support the designer to generate feedback on the consequence of design decision and product assembly.
- Design engineer also do not have specific method to design the product, which aims to produce an efficient and economics design.
- By using the traditional design method, quality and reliability of the design will not achieve the targeted level. It also does not ensure that the transition from the design phase to production phase will be smooth.
- Traditional design method also involves a lot of money because they do not use the specific method to evaluate the design. The evaluation of the design will come from feedback from the prototype. If the feedback is not good, they will redesign the product, make the new prototype and evaluate the prototype again to get the other feedback. This activity also involve a lot of time.

The entire factor list above gives many disadvantages for the design process, assembly process and the product quality and reliability such as:

- The product has too many parts.
- The product cost increase.

- Time To Market (TTM) increase.
- Assembly cycle time for the product increase.
- Increasing in product handling difficulties.

1.2 TITLE OF PROJECT

Product Design Evaluation of Lucas Hull DFMA Method.

1.3 OBJECTIVE OF PROJECT

To analyze the use of Lucas Hull DFMA method and to address the part count reduction.

1.4 SCOPES OF PROJECT

The scopes for this project has been classified and stated as below:

- To study other DFMA methodologies.
- To study the Lucas Hull DFMA method.
- To present product case study on how the application of Lucas Hull DFMA using TeamSet V3.1 software.
- To generate conceptual design and detail design using CAD software.

3

1.5 SUMMARY

Chapter one focus on the main purpose of PSM. Introduction of the project, problem statement, title of the project, objectives and scopes of the project are included. To full fill the project objective, student needs to undergone literature review, data analysis and product design development.

CHAPTER 2

LITERATURE REVIEW

2.0 INTRODUCTION

Now days, the design process use a specific method like Boothroyd Dewhurst, Lucas Hull and many more. All this method guides the design engineer through the analysis by using the assessment chart. Design engineer use these method to make sure the new develop product will be the best according to the criteria.

The criteria mention above is lower assembly cost, shorter assembly time, increase reliability and shorter total time to market. All this criteria is the main factor design engineer used this method is design and manufacture process.

This chapter will cover assembly definition, assembly history, assembly problem, DFMA, other DFMA method, conceptual design, detail design, and other literature review that related to the project.

All information relate to the project is very important to make sure the objective can be successfully achieve. Design for manufacturing and assembly combine the both main things in product design development and it can be the best guideline to reduce the part count but maintain the functionality. Every method has their own criteria that need to be achieved and these criteria will be covered in this chapter.