DECLARATION

"I hereby declared that I have read through this thesis and found that it has comply the partial fulfillment for awarding the degree of Bachelor Mechanical Engineering (Design & Innovation)"

Signature :

Supervisor's Name : Mr. Ruzi Bin Hj. Harun

Date : MAY 2009

APPLICATION OF DESIGN FOR ENVIRONMENT IN PRODUCT DESIGN

MOHD FARIZ BIN SABTU

This thesis is submitted to the Faculty of Mechanical Engineering, in partial fulfillment of the partial requirement for Bachelor of Mechanical Engineering (Design & Innovation)

FACULTYOF MECHANICAL ENGINEERING UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

"I hereby declared that I have read through this thesis and found that it has comply the partial fulfillment for awarding the degree of Bachelor Mechanical Engineering (Design & Innovation)"

Signature :

Supervisor's Name : Mr. Ruzi Bin Hj. Harun

Date : MAY 2009

DECLARATION

"I hereby declared that thi	s thesis is my origin	al work except for	questions and	citations,
\mathbf{w}	nich have been duly	acknowledgment"	•	

Signature :

Supervisor's name : Mohd Fariz Bin Sabtu

Date : MAY 2009

ACKNOWLEDGEMENTS

Alhamdulillah, I have successfully succeeded completing my PSM report. Firstly and most importantly, I would definitely want to grant a lot of thank and syukur to Allah S.W.T because giving me the blessing, opportunity and strength to complete my PSM report successfully. Not to forget my family especially to my mother and father which have supported me endlessly. Their support for me really gave me the strength and courage in completing this final year project.

I would like to take this opportunity to appreciate and thank Mr. Ruzi Bin Hj. Harun my final year project lecturer and supervisor for all his help and guidance which help me a lot in my report and project. I would also want to thanks all my classmates for their help and support.

Not forgetting to mention other lecturer which had helped me directly or indirectly from their advise, opinion and classes.

Last but not least, I would like to thank all the people who I didn't mention above that had help me threw out my project and also help me in completing this report. I really appreciate their help and it really means to me a lot for my PSM report, project and also my future.

DEDICATION

To my beloved family's

My love ones

All My friends

Lectures of FKM

Staff of UTeM

ABSTRACT

Today the idea of environmental issues influencing product design might seem as remote as a proposal in the early 1960's that pollution would become a constraint on manufacturing. For the main objective of Design for Environment is to give a support to develop environmentally friendly products. Thus, DFE must base on a very operative approach. A good DFE tool integrates environmental aspects directly in the product design process. So if anticipating change is a route to success, the method is use in term to solve the environmental effect. There are many methods available such as Life Cycle Assessment (LCA) method, BoothroydDewhurst (DFE) method and Material Flow Analysis (MFA) Method used in industrial. This report focuses on Boothroyd Dewhurst's (DFE) method that show how it works and applies to the environmental. The software is about Intended as an analysis tool that helps users design products that are easy to disassemble for recycling, reuse or disposal, the software has as its central premise the idea that voluntary environmental design should be a cost-driven activity. The software also help the company reduce cost and save time when make the research. This report include step of design for environmental in the Boothroyd Dewhurst's, design for assembly in Boothroyd Dewhurst's, re-design and generate a conceptual design and detail design using CAD software.

ABSTRAK

Masa kini idea untuk isu persekitaran banyak mempengaruhi dalam mereka bentuk semenjak pencemaran menjadi salah satu masalah dalam penghasilan produk. Objektif utama "Design for Environment" ialah member bantuan dalam mehasilkan produk yang mesra alam. Justeru itu, DFE mestilah beralaskan satu kaedah yang berhasil yand dapat dimanfaatkan. DFE bagus dalam mengintegrasikan aspek persekitaran terus kepada mereka bentuk hasilkan produk. Kita mengharapkan bahawa dengan mengunakan kaedah ini dapat menyelesaikan kesan pencemaran. Terdapat banyak kaedah yang boleh dipakai contohnya "Life Cycle Assessment (LCA) method", "BoothroydDewhurst (DFE) method" dan "Material Flow Analysis (MFA) Method" yang terdapat dalam penindustrian sekarang. Laporan ini lebih fokus kepada "Boothroyd Dewhurst's (DFE) method" yang menunjukan bagaimana menyelesaikan masalah keatas persekitaran. Perisian ini memberi analisis kepada penguna dalam menentukan produk yang mudah dileraikan untuk kitar semula,diguna balik atau dilupuskan, Perisian ini membantu syarikat untuk mengurangkan kos dan masa dalam membuat penyelidikan. Laporan ini "design for environmental", "design for termasuk langkah – langkah pengunaan assembly" dalam "Boothroyd Dewhurst's. Terdapat juga mereka bentuk semula didalam perisian"CAD" dan konsep pemilihan reka bentuk produk.

CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	ACKNOWLEDGEMENT	iii
	DEDICATION	iv
	ABSTRACT	v
	ABSTRAK	vi
	CONTENT	vii
	LIST OF FIGURE	xiii
	LIST OF TABLE	vii
	LIST OF APPENDIX	XV
	LIST OF GRAPH	xvi
	LIST OF SYMBOLS	xvi
CHAPTER 1	INTRODUCTION	1
	1.0 Problem Statement	1
	1.1 Objective of project	1
	1.2 Scope of project	1
	1.3 Project Signification	2
	1.4 Summary	3
CHAPTER	TITLE	PAGE
CHAPTER 2	LITERATURE REVIEW	4

	2.1 Introduction	4
	2.2 Design for Environment (DFE) methodologies	4
	2.3 Environmental Goals	6
	2.4 The Four Step of DFE	7
	2.5 Life Cycle Assessment (LCA) Method	9
	2.5.1 LCA 4 phases	10
	2.6.1 Approaches to design for assembly	10
	2.6 Designs for Assembly (DFA) Method	10
	2.7 Material Flow Analysis (MFA) Method	12
	2.7.2 Applications of	13
	2.7.1 Applications of MFA of Industrial Ecology	13
	2.8 Boothroyd Dewhurst Method	14
	2.9 Designs using Solid Works	19
	2.10 Conceptual Design	20
	2.10.1 Pugh Concept	20
	2.10.2 Concept Screening	22
	2.10.3 Concept Scoring	25
	2.11 Summary	30
CHAPTER 3	RESEARCH METHOD	31
	3.1 Introduction	31
	3.2 DFE methodology	31
	3.3 Application of DFE	33
	3.4 Simple Case Study	33
	3.4.1 Design Hurdles	34
	3.4.2 Design Analyses	34
	3.4.3 Green Results	36
	3.5. Summary	36

CHAPTER	TITLE	PAGE
CHAPTER 4	PRODUCT CASE STUDY: Mineral Water Pot	37
	4.1 Introduction	37
	4.2 Product Description	38
	4.3 Explode component of Mineral water pot	41
	4.4 6 Steps Filtration	42
	4.5 The product structure tree	43
	4.6 Summary	44
CHAPTER 5	CONCEPTUAL DESIGN PHASE	45
	5.1 Introduction	45
	5.2 The design under consideration	46
	5.2.1 Conceptual design 1	46
	5.2.2 Conceptual design 2	47
	5.2.3 Conceptual design 3	48
	5.2.4 Conceptual design 4	49
	5.2.5 Conceptual design 5	50
	5.3 Concept screening for new conceptual design	51
	5.4 The final concept selection	55
	5.5 The component of new conceptual design	56
	5.6 The new product structure tree	57
	5.7 Summary	58
CHAPTER	TITLE	PAGE
CHAPTER 6	DESIGN FOR ASSEMBLY (DFA)	59
	6.1 Introduction	59
	6.2 Assembly Worksheet Analysis	60

6.3 Classification system for manual handling	60
6.4 Classification System for Manual Insertion	61
6.5 Assembly Manual Worksheet	62
6.5.1 Design Efficiency	64
6.5.2 Operation Time	64
6.5.3 Operation Cost	64
6.5.4 Summary of manual Design Change	65
6.6 Redesign Product Critiques	65
6.6.1 Mechanism of the new product	65
6.7 Product Assembly Drawing New Design	66
6.7.1 New Product Structure Tree	67
6.8 Designs for Assembly BD	67
6.8.1 The Procedure of DFA	67
6.8.2 Analysis Water Pot design DFA Software	71
6.8.3 Analysis Water Pot Redesign DFA Softwar	r e78
6.9 Summary	81
DESIGN FOR ENVIRONMENT (DFE)	82
7.1 Introduction	82
7.2 Designs for Environment BD	82
7.3 DFE Material	83
7.4 Material Safety Data Sheet (MSDS)	83
7.4.1 Identity	83
7.4.2 Hazards Information	83
7.4.3 Firsts aid Procedures	84
7.4.4 Fire Fighting Measures	84
	6.4 Classification System for Manual Insertion 6.5 Assembly Manual Worksheet 6.5.1 Design Efficiency 6.5.2 Operation Time 6.5.3 Operation Cost 6.5.4 Summary of manual Design Change 6.6 Redesign Product Critiques 6.6.1 Mechanism of the new product 6.7 Product Assembly Drawing New Design 6.7.1 New Product Structure Tree 6.8 Designs for Assembly BD 6.8.1 The Procedure of DFA 6.8.2 Analysis Water Pot design DFA Software 6.8.3 Analysis Water Pot Redesign DFA Software 6.9 Summary DESIGN FOR ENVIRONMENT (DFE) 7.1 Introduction 7.2 Designs for Environment BD 7.3 DFE Material 7.4 Material Safety Data Sheet (MSDS) 7.4.1 Identity 7.4.2 Hazards Information 7.4.3 Firsts aid Procedures

CHAPTER	TITLE	PAGE
	7.4.5 Personal Protection	84
	7.4.6 Engineering Controls	84
	7.5 The Procedure of DFE	85
	7.6 Analysis Mineral Pot design in DFE Software	87
	7.7 Analysis Mineral Pot Redesign in DFE Software	90
	7.8 Summary	94
CHAPTER 8	DISCUSSION	95
	8.1 Introduction	95
	8.2 The importance of conceptual design	96
	8.3 Maximize Ease of Assembly (DFA)	96
	8.4 Comparison Manual Original and Manual New	98
	8.4.1 Percentage of Part Count Reduction	98
	8.4.2 Percentage of Assembly Count Reduction	99
	8.4.3 Percentage of Assembly Cost Reduction	99
	8.4.4 Percentage of Design Efficiency	99
	8.5 Comparison Software Original and Software New	100
	8.5.1 Percentage of Part Count Reduction	100
	8.5.2 Percentage of Assembly Count Reduction	100
	8.5.3 Percentage of Assembly Cost Reduction	101
	8.5.4 Percentage of Design Efficiency	101
	8.6 Comparison Original Manual and Original Softwar	e 101
	8.6.1 Percentage of Part Count Reduction	101
	8.6.2 Percentage of Assembly Count Reduction	102
	8.6.3 Percentage of Design Efficiency	102

CHAPTER	TITLE	PAGE
	8.7 Comparison New Manual and New Using Software	103
	8.7.1 Percentage of Part Count Reduction	103
	8.7.2 Percentage of Assembly Count Reduction	103
	8.7.3 Percentage of Design Efficiency	103
	8.8 Comparison between Original and New in DFE	104
	8.8.1 Total weight	104
	8.8.2 MET points	104
	8.8.3 Total Removal Time	104
	8.8.4 Total Disassembly Cost	105
	8.9 The result of the material selection	105
	8.10 The advantage of Design for Environment	106
	8.11 Summary	107
CHAPTER 9 CON	CLUSIONS AND FUTURE RECOMMENDATIONS	108
	9.1 Conclusions	108
	9.2 Future Recommendations	109
	APPENDIX	110
	REFERENCE	122

LIST OF FIGURE

FIGURE	TITLE	PAGE
1	Flow Chart for bachelor project.	2
2	The four steps of design for environment	8
3	Life Cycle Assessment (LCA) cycle	9
4	Hierarchical decomposition of selection criteria	26
5	Cooling display cabinets	34
6	Water Purifier	38
7	The explode component of existing Mineral water pot	41
8	The product structure tree	43
9	The 1 st conceptual design	46
10 11	The 2 nd conceptual design The 3 rd conceptual design	47 48
12	The 3 conceptual design The 4 th conceptual design	40 49
13	The 5 th conceptual design	50
14	The concept selection	55 55
15	The new product structure tree	57
16	Alpha and Beta Symmetry	60
17	Product assembly drawing of new Water Mineral Pot	66
18	Redesigned Structure Tree	67

LIST OF TABLE

TABL	E TITLE	PAGE
1	Technology Configuration Status	7
2	Boothroyd Dewhurst worksheet	18
3	The concept screening matrix.	23
4	Rating of concept scoring	26
5	The concept scoring matrix.	28
6	The table of bill of material	40
7	Table of concept screening matrix selection of the new design	52
8	The table Concept Scoring New conceptual design	53
9	The list of the component in the new conceptual design	56
10	Worksheet Analysis of Existing Mineral Water Pot	63
11	Summary of design change	65
12	Worksheet Analysis of Redesign Mineral Water Pot	66
13	Analysis totals DFA	71
14	Executive summary DFA	71
15	Executive summary DFMA	72
16	Structure chat of DFA	73
17	Suggestion for redesign of DFA	74
18	Analysis totals DFA redesign	78
19	Executive summary DFA redesign	78
20	Executive summary DFMA redesign	79
21	Structure chat of DFA redesign	80

LIST OF TABLE

TABLE	TITLE	PAGE
22 Tabl	e of MET point	87
23 Anal	ysis DFE	88
24 Mate	erial Use	89
25 Mate	erial Effect	90
26 Tabl	e of MET point redesign	91
27 Anal	ysis DFE redesign	92
28 Mate	erial redesign Use	93
29 Mate	erial effect	93
30 Summary of improvement using Software DFA		100
31 Summary of improvement of Manual DFA		101
32 Mine	eral Water Pot Material	105
	LIST OF APPENDIX	
APPENDIX	TITLE	PAGE
1	Gantt Chart Design for Environment (DFE)	111
2	List of Table	113
3	List of Detail Design of Mineral Water Pot	119

LIST OF GRAPH

TABLE	TITLE	PAGE
1	End Life Evaluation Mineral Water Pot	88
2	End Life Evaluation Mineral Water Pot	90

LIST OF SYMBOLS

DFA = **Design for Assembly**

DFE = **Design for Environment**

BD = BOOTHHROYD DEWHURST

MFA = Material Flow Analysis LCA = Life Cycle Assessment

mm = millimeters cm = centimeter

L = liters

m = Mass (kg)

t = Time(s)

Ib = pound

 N_m = Theoretical Minimum parts

 T_m = Operation Time

ABS = **Acrylonitrile-Butadiene-Styrene**

rij = raw rating of concept j for the i th criterion

Wi = weighting for i th criteria

n = number of criteria

Sj = total score for concept j

CHAPTER 1

Introduction

1.1 Problem Statement

Design for Environment now is an important thing in production to develop and distribute pollution prevention and environmental to human health risk on alternative chemicals, processes, and products. The DFE program is a testing ground for new approaches to risk reduction through pollution prevention. This report are about to raise environmental awareness level among a designers and engineers with the DFE method.

1.2 Objective of project

The main objective is to reveals the associated cost benefit and environmental impacts of the product design.

1.3 Scopes of project

The scopes of project as listed below.

- 1. To study the other DFE methodologies that aid in environment friendly product.
- 2. To study Boothroyd Dewhurst (B-D) Design for Assembly (DFA) method.
- 3. To study B-D's DFE software.
- 4. To present how the B-D's DFE can be used to consider environmental factors in product designs.
- 5. To raise environmental awareness level among a designers and engineers.

1.4 Project Signification

The project divided into two different part, bachelor project 1 and bachelor project 2, because need to running the project in two semesters. Bachelor project 1 is about study the problem statement, study the methodology design for environment, specific method studies on DFE in Boothroyd – Dewhurst (B-D), and study on simple case study.

Bachelor project 2 more on re-design the product selected with using B-D DFA method, detail conceptual design, modeling by using CAD software and using software DFE. Figure 1.1 the flow of project planning for both bachelor projects. Gantt chart refers to the appendix 1

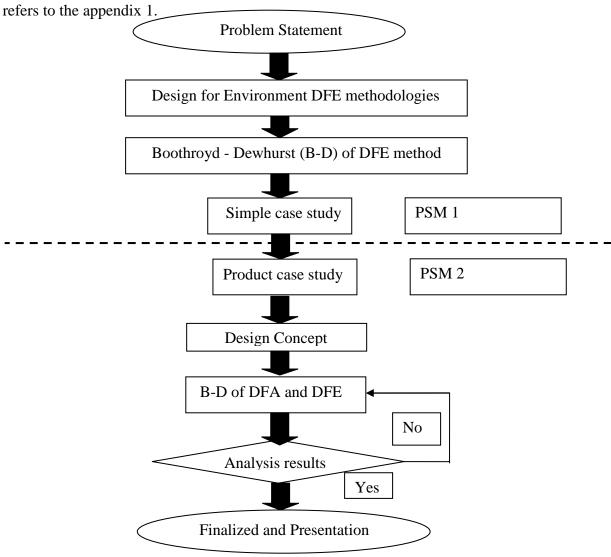


Figure 1.1 Flow Chart for bachelor project.

1.5 Summary

This chapter explained the introduction of the project. Project duration is two semesters for complete the project. Start from study the Design for Environment (DFE) methodologies, specific study on DFE methods in Boothroyd – Dewhurst (B-D) and to study the simple case study and product. DFE reveals the cost benefits for various options such as material recycling, part remanufacture or reuse, and disposal through landfill or incineration. In semester two, bachelor project will continue with redesign the selected existing product using DFE method, detail conceptual design, modeling by using CAD software and an analysis of the result that we get.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Design for Environment (DFE) is the consideration of pollution prevention and resource conservation within the design process. It was to recognize that environmental impacts must be considered during the new product design process, along with all of the usual design criteria. The purpose of DFE is to evaluate and identify ways to minimize the environmental burden resulting from products.

2.2 Design for Environment (DFE) methodologies

Over the past decade, Design for Environment (DFE) has attracted steadily increasing attention in the world. DFE is a general concept that refers to a variety of design approaches that attempt to reduce the overall environmental impact of a product, process or service, where environmental impacts are considered across its life cycle. DFE starts with the development of environmental goals within an example set of environmental policy, needs, and concern categories. Goals should be large in scope: considering the full life cycle of performance, cost, and environmental implications.

Within DFE, recyclability has received the most attention among design and manufacturing engineers in the U.S. Wide acceptance of design for assembly (DFA) methods provide a strong basis for including disassembly and recycling issues along with manufacturability evaluation. A product effectively designed for recyclability leads

to extended use of resources and net reduction in energy used to manufacture the product. The author also believes that recyclability is an issue to which design engineers can contribute environmental compatibility most readily as long as they have an appropriate end-of-life strategy. For this reason, the remainder of this paper focuses on environmental impact.

DFE, like predecessors Design for Manufacture & Assembly and Design for Service, is a concept-stage tool that substitutes analysis and optimization for the usual practice of following broad material and manufacturing guidelines. DFE reveals the cost benefits for various options such as material recycling, part remanufacture or reuse, and disposal through landfill or incineration. Designers also can pinpoint in the disassembly sequence where the major economic and ecological benefits end and where further disassembly is of no benefit either financially or environmentally. By understanding the inherent value of the materials and parts in a product, manufacturers are better able to plan for potential product take-back regulations [1].

DFE determines the environmental impact with a value-assessment metric developed by Boothroyd Dewhurst's European collaborator, TNO Institute of Industrial Technology, Delft, Netherlands. Called MET points, the metric analyzes issues relating to materials, energy, and toxicity.

The material assessment considers the product's impact on the exhaustion of earth's resources. The energy portion examines energy-related effects, such as the greenhouse effect, acidification, eutrophication, and smog. The toxicity factor measures toxic effects in terms of humans and ecotoxicity [1].

As questions in the disassembly and environmental sections of the software are answered, step by step change and improvement options are presented along with the product structure, costs, and eco effects. A graph display summarizes the entire product analysis and allows tracking of disassembly costs with environmental impacts.

2.3 Environmental Goals

The list of example facility, local, regional and global need for environmental goals is refer to the Tables 2.1 in appendix 2. To meet these environmental goals, DFE strategies include source reduction, material recovery, and when these fail, the use of treatable as opposed to untreatable materials. During design, these strategies can be introduced through:

- material selection/ changes,
- equipment selection/ changes improved purchasing choices,
- Improved operating practices,
- Improved recovery and disposition practices, and
- Improved logistics.

A useful technique to incorporate environmental considerations is to identify desirable types of technologies to be incorporated into designs. Table 2.2 in appendix 2 provides example technology types linked to DFE strategies. This example is not contributing to global warming, smog formation, etc. The application of technology within a design should be linked to DFE goal. As shown in Table 2.3 in appendix 2, a goal-impact-technology network can assist in DFE.

Desired and other technologies combine into design concepts. The *configuration* status refers to how these technologies are combined. In Table 2.4 below, show configuration status is intended to help the designer understand how complicated it will be to:

- Recover components and materials and
- Maintain and upgrade products and equipment.