'I admit that I have read this report and in my opinion this report is fulfilled the scope and quality for award condition of Bachelor of Mechanical Engineering (Thermal-Fluids)'

Signature	:
Supervisor's Name	:
Date	:

STUDY ON PREDICTIVE MAINTENANCE OF HVAC SYSTEM

AHMAD BIN ISMAIL

This report was adduced in partial fulfillment for award condition of Bachelor of Mechanical Engineering (Thermal-Fluids)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2009

"I hereby, declare this report is the result of my own research except as cited in the references"

Signatures	·
Signatures	

Author 's Name:.....

Date :....

Special Thanks To My Beloved Parents, Ismail and Zainab...

My Whole Family,

Abang Ki, Kak Na and Family

Kak Yah, Abang Yie and Family

Abang Wi

Abang Ha

Adik Mil

And All My Beloved Friends and Lecturers at UTeM

For All Your Commitments and Supports

Thank You Very Much...

Love All of You Always....

ACKNOWLEDGEMENT

Alhamdulillah, after all the effort of work and studies, this report of *Projek Sarjana Muda (PSM)* has finally completed. This one year of the *PSM* is able to complete within the time frame with the help of some of the people who have willingly to shared knowledge, ideas and lend their hand to me while completing this research. Therefore, I would like to take this opportunity to express my token of appreciation to those who have directly or indirectly involved in this project.

Firstly, I would like to thank both of my parents for their support upon completing this project. My deepest thank goes to my supervisor, Mr. Ahmad Fuad. Thank you very much for sharing his expertise knowledge, thoughts and ideas with me. Thanks for all the guidance he have given to me. Without his guidance and advice, I would not be able to perform my research project.

A token of appreciation also goes to all JKR staffs at Mechanical Department especially to Mr. Zainal as Head of Maintenance Unit (Building Services) and also Mr. Masri as JKR Technician at Seri Negeri. Not forgotten also to all my friends and all my fellow course mates in making this *PSM* a success. Thank you for their time, knowledge and skill for helping me in terms of ideas, transportation, facilities, financial, etc.

Hopefully my *PSM* will be helpful and beneficial to people who are interested to make further study in this field. Lastly, thank you very much again and certainly, it would be impossible to complete the *PSM* without helps from all of them.

ABSTRACT

Heating, Ventilating and Air Conditioning (HVAC) is humidity equipment that comes in one package to provide comfort ability to people. Commercial HVAC systems provide the people working inside buildings with conditioned air so that they will have a comfortable and safe work environment. There are three main systems in HVAC system, which are heating, ventilating and air conditioning. For each main system, there are many others equipment or components in it. The maintenance of HVAC system is very important in order to maintain humidity services to people. So, many academics and researchers make a study about HVAC maintenance to always propose new method which is better than conventional maintenance method and replace it. In this paper or report, it is also mentioned about the methodology in order to do research about the HVAC maintenance which is focused on chillers and AHU only. The best method in HVAC maintenance is by predictive maintenance. Actually, there are many types of technologies used in predictive maintenance like, vibration analysis, oil analysis, eddy current testing, IR thermography and also ultrasonic testing. This type of maintenance has more advantages than disadvantages.

ABSTRAK

Pemanasan, pengalihudaraan dan penyaman udara merupakan alat pelempap udara yang digabung menjadi satu sistem dan dipanggil sebagai sistem HVAC. Sistem ini berupaya untuk memberi keselesaan kepada manusia dengan terhasilnya udara yang lembap di dalam bangunan yang asalnya bersuhu tinggi. Ini membolehkan manusia melakukan aktiviti mereka dengan selesa dan dalam keadaan yang selamat. Terdapat tiga sistem yang utama dalam sistem HVAC ini iaitu pemanasan, pengalihudaraan dan penyaman udara. Setiap sistem ini pula mengandungi pelbagai alat kelengkapannya yang tersendiri. Penyelenggaraan sistem HVAC ini amat penting untuk menjamin dan mengekalkan kebolehfungsiannya dalam memberi keselesaan kepada manusia. Oleh itu, ramai antara ahli akademik dan pengkaji yang melibatkan diri dalam kajian ini untuk mencari satu kaedah penyelenggaraan yang baru dan lebih baik daripada yang sedia ada dan menggantikannya. Kertas kajian ini ataupun laporan ini turut mengandungi metodologi untuk menjalankan kajian tentang penyelenggaraan sistem HVAC ini dan menumpukan kepada dua komponen iaitu alat pendingin air dan unit pengelola udara (AHU). Penyelenggaraan jangkaan adalah kaedah yang paling sesuai dan tepat dalam proses menyelenggara system HVAC ini. Sebenarnya terdapat pelbagai teknologi yang digunakan dalam kaedah penyelenggaraan jangkaan ini antaranya ialah analisis getaran, analisis minyak, ujian arus pusar, thermografi inframerah dan juga ujian ultrasonik. Kaedah penyelenggaraan ini mempunyai banyak kelebihan daripada kelemahan.

TABLE OF CONTENTS

CHAPTER	ITEN	AS	PAGES
	CON	FESSION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABST	ГКАСТ	v
	ABST	TRAK	vi
	TAB	LE OF CONTENTS	vii
	LIST	OF TABLES	xi
	LIST	OF FIGURES	xii
	LIST	OF ABBREVIATIONS, SYMBOLS &	
	UNIT		XV
	LIST	OF APPENDIXES	xviii
CHAPTER 1	INTR	RODUCTION	1
	1.1	Background	1
	1.2	Objectives	2
	1.3	Problem Statements	2
	1.4	Scope	3
CHAPTER 2	THE	ORY	4
	2.1	HVAC System	5

CHAPTER ITEMS

		2.2.1	Heating		6
		2.2.2	Ventilating		9
		2.2.3	Air Conditioning		10
	2.3	Centra	Il HVAC System Components		11
	2.4	How a	n HVAC Works		13
CHAPTER 3	LITERA	ATURI	E REVIEW		16
	3.1	Wirele	ess Condition Monitoring and		
		Mainte	enance for Rooftop Packaged		
		Heatin	g, Ventilating and Air-Conditioning		
		by Kat	tipamula, S. and Brambley, M. R		16
		3.1.1	Monitoring Plan, Automated Fault		
			Detection and Diagnostics		17
		3.1.2	Costs of Package-Unit Monitoring		
			Systems		22
	3.2	Improv	ved Thermal Building Management		
		with th	ne Aid of Integrated Dynamic HVAC		
		Simula	ation by Mathews, E.H. and Botha, C.P	. 26	
		3.2.1	Case Study	26	
		3.2.2	Improved Building Management		
			Through Simulation		28
			3.2.2.1 Cooling Coil Fouling		28
			3.2.2.2 Chiller Degradation		30
			3.2.2.3 Control Strategy Adjustment		32
	3.3	Model	-Based Fault Detection and Diagnosis		
		of HV	AC Systems Using Support Vector		
		Machi	ne Method by Liang, J. and Du, R		35
		3.3.1	Design of MBFDD Scheme		35
		3.3.2	Modeling of the HVAC System		37

CHAPTER	ITEMS	5	PAGES
		3.3.3 Fault Diagnosis Results	38
CHAPTER 4	METH	ODOLGY	40
	4.1	Do Research By Articles, Journals,	
		Reference Books, Etc.	42
	4.2	Identify Problems Statements	42
	4.3	Identify Systems Used	42
	4.4	Find the Place to Do Research	43
	4.5	Make Observation Research and Interview	43
	4.6	Make on Documentation Research	43
	4.7	Make Analysis and Discussion	44
CHAPTER 5	RESUI	LT	45
	5.1	Common Problems Occurred	46
	5.2	Predictive Maintenance (PdM) on Chiller	48
	5.3	Predictive Maintenance (PdM) on Air	
		Handling Unit (AHU)	48
	5.4	Vibration Analysis	48
	5.5	Oil Analysis	51
	5.6	Building Automation System (BAS)	52
CHAPTER 6	DISCU	SSION	56
	6.1	Advantages and Disadvantages of Predictive	
		Maintenance	56
	6.2	Others Predictive Maintenance Technologies	59
		6.2.1 Eddy Current Testing	59
		6.2.2 IR Thermography	60
		6.2.3 Ultrasonics Testing	62
		6.2.4 <i>i</i> SCADA Technology	63

CHAPTER	ITEMS		PAGES
	6.3	The Costs of Condition Monitoring Technologies	64
CHAPTER 7	CON	CLUSION	66
	BIBL	ERENCES IOGRAPHIES ENDIXES	68 69 70
			70

LIST OF TABLES

NO.	TITLE	PAGES
3.1	Costs for a Wired System for Monitoring	
	Six HVAC Units	
	(Source: Katipamula and Brambley, 2004)	23
3.2	Costs for a Low-Cost Wireless System for	
	Monitoring HVAC Units	
	(Source: Katipamula and Brambley, 2004)	25
3.3	Simulated indoor (return) temperatures of	
	lecture rooms when heatingelements are	
	disabled due to coil fouling. (The shaded	
	area indicates the rooms that are unoccupied.)	
	(Source: Mathews and Botha, 2003)	34
6.1	Advantages and Disadvantages of Predictive Maintenance	58
6.2	Approximate Costs to Start CBM in Various Technologies	
	(Source: Dennis, 2003)	65

LIST OF FIGURES

TITLE	PAGES
Boiler	
(Source: Internet reference, 23/08/2008)	7
Furnaces	
(Source: Internet reference, 23/08/2008)	8
Heating coils	
(Source: Internet reference, 23/08/2008)	9
Schematic of Condition Monitoring System	
for Rooftop Packaged Units with Wireless Sensors	
(Source: Katipamula and Brambley, 2004)	18
Schematic Depiction of HVAC and Monitoring	
Equipment Layout	
(Source: Katipamula and Brambley, 2004)	22
Prototype Integrated Wireless Data Collection	
and Transmission Unit	
(Source: Katipamula and Brambley, 2004)	24
Schematic layout of the chilled water HVAC system	
installed in the case study building	
(Source: Mathews and Botha, 2003)	27
Simulated effect of reduced cooling coil efficiency	
on indoor temperatures in the building	
(Source: Mathews and Botha, 2003)	29
	 Boiler (Source: Internet reference, 23/08/2008) Furnaces (Source: Internet reference, 23/08/2008) Heating coils (Source: Internet reference, 23/08/2008) Schematic of Condition Monitoring System for Rooftop Packaged Units with Wireless Sensors (Source: Katipamula and Brambley, 2004) Schematic Depiction of HVAC and Monitoring Equipment Layout (Source: Katipamula and Brambley, 2004) Prototype Integrated Wireless Data Collection and Transmission Unit (Source: Katipamula and Brambley, 2004) Schematic layout of the chilled water HVAC system installed in the case study building (Source: Mathews and Botha, 2003) Simulated effect of reduced cooling coil efficiency on indoor temperatures in the building

NO.	TITLE	PAGES
3.6	Simulated effect of reduced cooling coil	
	efficiency on chiller power consumption	
	(Source: Mathews and Botha, 2003)	30
3.7	Simulated effect of reduced chiller efficiency	
	on indoor temperatures in the building	
	(Source: Mathews and Botha, 2003)	31
3.8	Simulated effect of reduced chiller efficiency	
	on chiller power consumption	
	(Source: Mathews and Botha, 2003)	32
3.9	Schematic layout of the air flow through the	
	reheating system currently used in the case study	
	building	
	(Source: Mathews and Botha, 2003)	33
3.10	The block diagram of the MBFDD method	
	(Source: Liang and Du, 2006)	34
3.11	Illustration of a single zone HVAC system model	
	(Source: Liang and Du, 2006)	36
3.12	Design of the SVM classifier	
	(Source: Liang and Du, 2006)	38
3.13	Flow chart of the four-layer SVM classifier	
	(Source: Liang and Du, 2006)	39
4.1	Flow Chart of Research Procedure	41
5.1	Chiller	45
5.2	AHU	45
5.3	Typical Vibration Transducers	
	(Source: www.eere.energy.gov/femp, 27/03/2009)	49
5.4	Typical Hand-held Vibration Sensing Meters	
	(Source: www.eere.energy.gov/femp, 27/03/2009)	50

NO. TITLE

5.5	Typical Vibration Analyzer	
	(Source: www.eere.energy.gov/femp, 27/03/2009)	50
5.6	Oil Analysis Work and Typical Oil Analysis Equipment	
	(Source: Carrier Corp., 2002)	52
5.7	Chiller Plant Diagram	
	(Source: JKR, 2009)	54
5.8	DDC Controller Panel	55
6.1	Doing Eddy Current Testing	
	(Source: Carrier Corp., 2002)	59
6.2	Example Thermogram Showing Misalignment	
	(Source: www.eere.energy.gov/femp, 27/03/2009)	61
6.3	Typical IR Spot Thermometer	
	(Source: www.eere.energy.gov/femp, 27/03/2009)	61

LIST OF ABBREVIATIONS, SYMBOLS & UNIT

HVAC	Heating, Ventilating and Air Conditioning
IAQ	Indoor Air Quality
ASHRAE	American Society of Heating, Refrigerating and Air Conditioning
	Engineers
%	Percentage
°F	Fahrenheit Degree
LPG	Liquid Petroleum Gas
cfm	cubic feet per minute
OA	Outside Air
MUA	Make-up air
fpm	feet per minute
СТ	Cooling Tower
CWP	Condenser Water Pump
CWS	Condenser Water Supply
CWR	Condenser Water Return
СН	Chiller
CHWP	Chilled Water Pump
CHWS	Chilled Water Supply
CHWR	Chilled Water Return
CC	Cooling Coil
НС	Heating Coil
HWS	Heating Water Supply
HWR	Heating Water Return
HWP	Heating Water Pump

HHWS	Heating Hot Water Supply
В	Boiler
SAF	Supply Air Fan
SAD	Supply Air Duct
MVD	Manual Volume Damper
CD	Ceiling Diffuser
RA	Return Air Inlet
RAF	Return Air Fan
RA	Return Air Dampers
ATC	Automatic Temperature Control Damper
EA	Exhaust Air (Dampers)
F	Filters
ATC	Automatic Temperature Control Valve
MBV	Manual Balancing Valve
AHU	Air Handling Unit
RTU	Roof Top Unit
Btu/hr	British thermal unit per Hour
MVD	Manual Volume Dampers
TR	Ton of Refrigeration
FDD	Fault Detection and Diagnostic
m^2	meter square
mm	milimeter
FCU	Fan Coil Units
СОР	Coefficient of Performance
MBFDD	Model-Based Fault Detection and Diagnosis
SVM	Support Vector Machine
SMO	Sequential Minimal Optimization
Hz	Hertz
AC	Alternating Current
DC	Direct Current
JKR	Jabatan Kerja Raya

PM	Preventive Maintenance	
PdM	Predictive Maintenance	
PaM	Proactive Maintenance	
FBM	Failure Based Maintenance	
BAS	Building Automation System	
DDC	Direct Digital Control	
CBM	Condition Based Monitoring	
MCSA	Motor Current Signature Analysis	
IR	Infrared	
FAM	Facilities and Asset Management	
SMS	Short Messaging System	

LIST OF APPENDIXES

NUM.	TITLE	PAGES
A	Gantt Chart	70
B	Carrier Hermetic Screw Liquid Chiller	71
С	ASIC Building Monitoring Software	74

CHAPTER 1

INTRODUCTION

1.1 Background

Heating, ventilating and air conditioning (HVAC) system is very useful to people especially those live in the working building that need comfortable and safe work environment. Many large buildings and campuses have HVAC system. Maintaining and optimizing the performance of HVAC equipments like pumps, chillers and motors can be challenging. These systems often have hidden performance problems that waste energy and cause excessive wear on equipment. A preventive and predictive maintenance plan is an excellent way to maintain an efficient system, save energy dollars, prevent costly breakdowns, and extend equipment life. Today, the HVAC system is one of the main necessities in the working building but to maintain it works smoothly and can provide good environment, it needs a good maintenance. Building systems are the lifeblood of any facility. Without lighting, water, or heating and cooling, a building would be uninhabitable. That is why a strong preventive and predictive HVAC maintenance program is not an option but it is the thing that we should do. So, with the blooming of technologies nowadays it should have the alternative way in HVAC maintenance to replace the old ones.

1.2 Objectives

While doing this study or research, they are some objectives that should be achieved based on problems that we want to encounter. The objectives are to:

- i. Identify the problems that commonly occurred on the HVAC system.
- ii. Study the predictive maintenance or condition monitoring of the HVAC system
- iii. Analyze the advantages and disadvantages by using condition monitoring on HVAC maintenance.

1.3 Problem Statements

Nowadays, HVAC system is very important to use and be a main necessity or requirement either to working building or living building like commercial buildings, offices, supermarkets and campuses building. To get good environments in the buildings, HVAC system should be monitored and controlled effectively, in other words the scheduled maintenance are required in order to maintain good working of HVAC systems. The cost of the maintenance is became the most factors to dispute and argue among engineers. So, they need to find a solution how to detect and identify developing problems before failure and extensive damage can occur. By this, they can make proper and suitable actions to avoid the HVAC equipments from breakdowns otherwise they will have problems to repair and maintenance. So, the best solution is by make a predictive maintenance on HVAC system based on condition monitoring methods and technologies.

1.4 Scope

This research is about the study on the predictive maintenance on HVAC system. Means that, this research want to study what are the methods and technologies used in order to monitor the condition of the HVAC equipments in terms of problems occurred during the operation of these equipments. There are many types of HVAC equipments like boiler, chiller, cooling tower and air handling unit (AHU). But, in this research it will focus just on the chiller and AHU. In order to study about predictive maintenance, the basic information about the problems or failures that are commonly occurred on chiller and AHU need to be identified first. Then, how the predictive maintenance is going to overcome these problems need to study as a climax of the research.

CHAPTER 2

THEORY

HVAC actually is an acronym for heating, ventilating and air conditioning. HVAC system is very important especially in working building or office building that involves many people in order to provide comfort ability to people. According to Samuel (2005), provide an acceptable level of occupancy comfort and process function is one of HVAC system objectives beside to maintain good indoor air quality (IAQ) and to keep system costs and energy requirements to a minimum. The three functions of heating, ventilating, and air-conditioning are closely interrelated. All seek to provide thermal comfort, acceptable indoor air quality, and reasonable installation, operation, and maintenance costs.

2.1 HVAC System

Commercial heating, ventilating and air conditioning (HVAC) systems provide the people working inside buildings with conditioned air so that they will have a comfortable and safe work environment. People respond to their work environment in many ways and many factors affects their health, attitude and productivity. Air quality and the condition of the air are two very important factors. By conditioned air and good air quality, we mean that air should be clean and odor-free and the temperature, humidity and movement of the air will be within certain acceptable comfort ranges. ASHRAE, the American Society of Heating, Refrigerating and Air Conditioning Engineers, has established standards which outline indoor comfort conditions that are thermally acceptable to 80% or more of a commercial building's occupants. Generally, these comfort conditions, sometimes called the "comfort zone", are between 68°F and 75°F for winter and 73°F to 78°F during the summer. Both these ranges are for room air at approximately 50% relative humidity and moving at a slow speed (velocity) of 30 feet per minute or less.

An HVAC system is simply a group of components working together to move heat to where it is wanted (the conditioned space), or remove heat from where it is not wanted (the conditioned space) and put it where it is unobjectionable (the outside air).