"Saya/Kami* akui bahawa telah membaca Karya ini dan pada pandangan Saya/Kami* karya ini Adalah memadai dari segi skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal (Automotif)

> Tandatangan Nama Penyelia Tarikh

Tandatangan Nama Penyelia Tarikh

*Potong yang tidak berkenaan

ANALISIS RISIKO DARIPADA SUDUT KUALITATIF DAN KUANTITATIF TERHADAP NGV PADA KERETA KOMPAK

MOHD TAHA BIN HANAFI

Laporan ini dikemukakan sebagai memenuhi sebahagian daripada syarat penganugerahan Ijazah Sarjana Muda Kejuruteraan Mekanikal (automotif)

Fakulti Kejuruteraan Mekanikal
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

April 2009

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap- tiap satunya saya jelaskan sumbernya"

Tandatangan :

Nama Penulis: MOHD TAHA BIN HANAFI

Tarikh: 18/5/09

DEDIKASI

Untuk ayahanda dan bonda yang dirindui dan disayangi, kaum keluarga tercinta dan rakan – rakan seperjuangan.

PENGHARGAAN

Puji-pujian bagi Allah S.W.T., Tuhan semesta alam. Selawat dan salam ke atas junjungan besar Nabi Muhammad s.a.w. Syukur ke hadrat Ilahi kerana dengan limpah kurnianya, maka projek ini dapat disiapkan dalam tempoh yang telah ditetapkan.

Di sini, penulis ingin merakamkan jutaan terima kasih terutamanya kepada penyelia projek, Puan Rafidah Binti Hassan yang telah banyak memberi bimbingan, kerjasama serta teguran membina sepanjang tempoh projek ini dijalankan.

Tidak lupa juga, setinggi-tinggi penghargaan ditujukan kepada rakan - rakan yang sama-sama bersusah payah dalam membantu menyiapkan projek ini. Jutaan terima kasih juga diucapkan kepada sesiapa yang terlibat sama ada secara langsung atau tidak langsung dalam membatu menyiapkan projek ini. Semoga Allah S.W.T. membalas segala jasa baik kalian semua.

ABSTRACT

This project paper is to study the risk analysis in qualitative and quantitative for NGV as compact car. This analysis includes the qualitative and quantitative method to determine the failure or hazard occured due to the NGV system. By using risk analysis the failure or hazard can be prevented and the safety can be improved.

The methods that have been chosen for qualitative analysis is FMEA. This software will show severity, occurrence and the detection of the failure happen. The Event-Tree method is used for the quantitative analysis because the method outlines future probability for the event or failure to take place.

ABSTRAK

Kajian ini dijalankan adalah untuk melakukan analisis risiko terhadap sistem NGV yang dipasang pada kereta kompak. Analisis ini dilakukan sebagai usaha menambahbaik sistem NGV yang digunakan pada hari ini. Analisis ini dilakukan melalui dua sudut iaitu secara kualitatif dan kuantitatif. Dengan adanya analisis ini, maka kegagalan dalam sistem dapat dikenalpasti dan seterusnya akan diperbaiki.

Dari sudut kualitatif, kaedah yang digunakan ialah kaedah FMEA. Dengan kaedah ini, segala kegagalan pada sistem dapat dikenal pasti dan tahap keselamatan sistem dapat dipertingkatkan kerana terdapatnya kaedah kawalan dan pencegahan.

Dari sudut kuantitatif pula, kaedah Event-Tree telah dipilih. Ini kerana kaedah ini dapat memberi nilai kebarangkalian sesuatu perkara yang akan berlaku. Dengan cara ini juga kita dapat mengetahui kebarangkalian kegagalan dan kerugian yang berlaku pada sistem NGV.

KANDUNGAN

DAD	PERNARA	HALAMAN
	PENGAKUAN	ii
	DEDIKASI	iii
	PENGHARGAAN	iv
	ABSTRACT	v
	ABSTRAK	vi
	KANDUNGAN	ix,x
	SENARAI JADUAL	xi
	SENARAI RAJAH	xii
	SENARAI LAMPIRAN	xiii
BAB I	PENGENALAN	1
	1.1 Pengenalan Tentang NGV	1
	1.2 Masalah Kajian	2
	1.3 Objektif Kajian	2
	1.4 Skop Kajian	3
	1.5 Rumusan	3
BAB II	KAJIAN ILMIAH	4
	2.1 Latar Belakang NGV terhadap kereta kompak	4
	2.2 Proses Pembakaran NGV Pada Kenderaan Kompak	4
	2.3 Tahap keselamatan sistem NGV	6
	2.4 Analisis Risiko	8
	2.4.1 Kajian Analisis Risiko	8
	2.5 Kajian kualitatif dan kuantitatif	10

BAB	PERKARA	HALAMAN
	2.5.1 Analisis Kajian Kualitatif	10
	2.5.2 Aplikasi analisis risiko kajian kualitatif	10
	2.5.3 Ciri-ciri analisis risiko kajian kualitatif	11
	2.5.4 Analisis kajian kuantitatif	12
	2.5.5 Aplikasi analisis risiko kajian kuantitatif	12
	2.5.6 Ciri-ciri analisis risiko kajian kuantitatif	12
DAD III	TZA PIRANT YZA YZANY	
BAB III	KAEDAH KAJIAN	4.0
	3.1 Pemilihan kaedah ujikaji	13
	3.2 Proses yang dijalankan pada setiap kaedah	15
	3.2.1 Langkah Kerja untuk memperoleh data	
	dari responden	16
	3.3 Kaedah Untuk Kajian Kualitatif	17
	3.3.1 Kaedah Mod Kegagalan dan Analisis Kesa	n
	(FMEA)	17
	3.4 Penelitian Severity, Occurence dan Detection	18
	3.4.1 Severity	18
	3.4.2 Occurence	19
	3.4.3 Detection	20
	3.4.4 Penelitian tentang RPN	
	(Risk Priority Number)	21
	3.4.5 Perubahan nilai RPN dan peratus	
	penurunan RPN	21

BAB	PER	KARA	HALAMAN
	3.5	Kaedah Untuk Kajian Kuantitatif	22
		3.5.1 Kaedah Event – Tree	22
		3.5.2 Perbezaan Antara Kajian dan	
		Data Analisis Kualitatif dan Kuantitatif	23
BAB IV		DATA UJIKAJI	
	4.1	Pengenalan.	25
	4.2	Penyusunan data	26
	4.3	Bilangan pemilihan tahap oleh	
		responden pada setiap soalan	27
		4.3.1 Bahagian keselamatan	27
		4.3.2 Bahagian Keselesaan	28
		4.3.3 Kompenan	29
	4.4	Kegagalan-kegagalan yang	
		boleh berlaku pada sistem.	33
		4.4.1 Bahagian Keselamatan	33
		4.4.2 Bahagian keselesaan	35
		4.4.3 Bahagian kompenan utama	
		(tangki silinder, sistem paip, mixer dan regulator)	36
	4.5	Data-data dianalisis dengan perisian FMEA	39
		4.5.1 Nilai kebarangkalian untuk berlaku	
		pada setiap kegagalan pada setiap bahagian	41
		4.5.2 Data punca- mod kegagalan	
		dengan peratusannya	43

BAB	PERKARA	HALAMAN
4.6	Data-data dianalisis dengan perisian ETA (Event Tree Analysis)	46
	4.6.1 Bahagian keselamatan.	46
	4.6.2 Bahagian Keselesaan	49
	4.6.3 Bahagian Kompenan utama	50
BAB V	PERBINCANGAN	
5.1	Huraian kebarangkalian kegagalan pada sistem	54
	5.1.1 Bahagian keselamatan	55
	5.1.2 Bahagian Keselesaan	55
	5.1.3 Bahagian Kompenan	56
5.2	Analisis melalui graf Rpn melawan	
	kegagalan untuk setiap bahagian	59
	5.2.1 Bahagian keselamatan	59
	5.2.2 Bahagian Keselesaan	59
	5.2.3 Bahagian Kompenan	60
5.3	Langkah-langkah pengawalan	
	yang diteliti pada sistem.	63
	5.3.1 Bahagian keselamatan	63
	5.3.2 Bahagian Keselesaan	63
	5.3.3 Bahagian Kompenan	64
BAB VI	KESIMPULAN	
6.1	Cadangan	67

Rujukan	69
Tamatan A	70
Lampiran A	70
Lampiran B	71
Lampiran C	72
Lampiran D	73
Lampiran E	74
Lampiran F	75

SENARAI JADUAL

BIL	TAJUK	HALA	MAN
3.1	Penerangan tahap-tahap severity		18
3.2	Penerangan nilai-nilai severity		19
3.3	Penerangan tahap-tahap occurence		20
3.4	Penerangan tahap-tahap Detection		20
3.5	Jadual perbezaan di antara kajian kualitatif dan kuantitatif		23
4.1	Bilangan repondan pada mengikut bahagian		26
4.2	Bilangan respondan pada setiap tahap		
	untuk bahagian keselamatan		27
4.3	Bilangan respondan pada setiap tahap		
	untuk bahagian keselesaan		28
4.4	Bilangan respondan pada setiap tahap		
	untuk bahagian tangki silinder		29
4.5	Bilangan respondan pada setiap tahap		
	untuk bahagian sistem perpaipan		30
4.6	Bilangan respondan pada setiap tahap untuk bahagian mixer	į	31
4.7	Bilangan respondan pada setiap tahap untuk bahagian regula	ator	32
4.9	Jenis kegagalan dan kebarangkalian di bahagian keselamata	n	41
4.10	Jenis kegagalan dan kebarangkalian di bahagian keselesaan		41
4.11	Jenis kegagalan dan kebarangkalian di bahagian tangki silin	der	42
4.12	Jenis kegagalan dan kebarangkalian di bahagian sistem perp	aipan	42
4.13	Jenis kegagalan dan kebarangkalian di bahagian regulator		42
4.14	Jenis kegagalan dan kebarangkalian di bahagian regulator		43
4.15	Punca-mod kegagalan di dalam unit peratus		43
4.16	Senarai kegagalan pada setiap bahagian		44
4.17	Senarai punca untuk setiap kegagalan yang berlaku		45

4.18	Kejadian untuk ETA bagi kegagalan jenis kebocoran	47
4.19	Kejadian untuk ETA bagi kegagalan jenis letupan	48
4.20	Punca kegagalan serta kebarangkalian bagi kegagalan dalam	
	keselesaan	49
4.21	Punca kegagalan serta kebarangkalian bagi tangki silinder	50
4.22	Punca kegagalan serta kebarangkalian bagi sistem perpaipan	51
4.23	Punca kegagalan serta kebarangkalian bagi mixer	52
4.23	Punca kegagalan serta kebarangkalian bagi regulator	53

SENARAI RAJAH

BIL	TAJUK	IALAMAN
2.1	Laluan bahanapi NGV dari Tangki ke Enjin	8
2.2	Gabungan antara tiga bahagian analisis risiko	11
2.3	Carta alir proses analisis risiko	12
3.1	Carta alir pemilihan kaedah ujikaji	14
3.2	Carta Alir Proses Ujikaji	15
3.3	Contoh jadual pengambilan data untuk kaedah FMEA	17
3.4	Contoh jadual kebenaran (truth table) pengambilan data untuk	c
	kaedah Event-Tree	23
4.1	Contoh letupan pada tangki silinder	33
4.2	Contoh kebocoran pada tangki silinder	34
4.3	Contoh tangki silinder yang meletup	34
4.4	Tangki silinder di dalam sebuah kereta kompak	35
4.5	Contoh tangki silinder yang berkarat	36
4.6	Kedudukan injap silinder	36
4.7	Sistem perpaipan NGV pada kenderaan	37
4.8	Kedudukan pegas di dalam regulator	38
4.9	Kebocoran regulator	38
4.10	Contoh bendasing di dalam regulator	38
4.11	Susunan label sistem NGV yang dianalisis dalam perisian FM	EA 39
4.12	Contoh data-data yang dimasukkan ke dalam perisian FMEA	39
4.13	Susunan pengiraan RPN pada perisian FMEA	40
4.14	Contoh analisis ETA untuk kegagalan pada sistem pada setiap bahagian	46

5.1	Graf kegagalan melawan kebarangkalian untuk	
	bahagian keselamatan	55
5.2	Graf kegagalan melawan kebarangkalian untuk	
	bahagian keselesaan	55
5.3	Graf kegagalan melawan kebarangkalian untuk	
	kompenan tangki silinder	56
5.4	Graf kegagalan melawan kebarangkalian untuk	
	kompenan sistem perpaipan	57
5.5	Graf kegagalan melawan kebarangkalian untuk	
	kompenan mixer	57
5.6	Graf kegagalan melawan kebarangkalian untuk	
	kompenan regulator	58
5.7	Graf Rpn melawan kegagalan untuk	
	bahagian keselamatan	59
5.8	Graf Rpn melawan kegagalan untuk	
	bahagian keselesaan	60
5.9	Graf Rpn melawan kegagalan untuk	
	kompenan tangki silinder	60
5.10	Graf Rpn melawan kegagalan untuk	
	kompenan sistem perpaipan	61
5.11	Graf Rpn melawan kegagalan untuk	
	kompenan mixer	61
5.12	Graf Rpn melawan kegagalan untuk	
	kompenan regulator	62

SENARAI LAMPIRAN

LAMPIRAN	TAJUK	ALAMAN
Lampiran A	Contoh kaedah FMEA dengan menggunakan perisian	70
Lampiran B	Perancangan pelajar pada PSM 1	71
Lampiran C	Perancangan pelajar pada PSM 2	72
Lampiran D	Kadar peningkatan penggunaan NGV diseluruh dunia	73
Lampiran E	Joule-Thompson effect, pembekuan di dalam regulator	74
Lampiran F	Block and head deformation graph	75

BABI

PENGENALAN

1.1 Pengenalan

NGV adalah singkatan daripada kata penuh "Natural Gas for Vehicle" atau di dalam Bahasa Melayu membawa maksud kenderaan yang menggunakan gas asli yang digunakan untuk menghasilkan tenaga pada sesebuah kenderaa. Penggunaan NGV pada masa kini telah meliputi semua jenis kenderaan sama ada kenderaan berat, bas, atau kereta. (Rujukan Internet, 5/5/05).

Penggunaan sistem NGV pada kereta kompak boleh dikatakan agak meluas digunakan pada masa kini. Justeru itu kajian analisis risiko perlu dijalankan untuk meningkatkan lagi tahap keselamatan dan keselesaan sistem NGV yang digunakan. Dalam analisis risiko ini, segala kegagalan yang berlaku terhadap sistem NGV akan dikaji bagaimana dan apakah punca ia berlaku. Dengan cara ini kebarangkalian dan tahap risiko kegagalan pada sistem dapat dikenalpasti dan sekali gus terus meningkatkan tahap keselamatannya. Perisian yang digunakan dalam analisis risiko ini adalah perisian yang telah banyak digunakan dalam industri dalam meningkatkan kualiti dan tahap keselamatan produk mereka. Perisian yang digunakan ialah FMEA (failure mode and effect analysis) dan kaedah ETA (event tree analysis).

1.2 Masalah Kajian

Tujuan kajian ini dilakukan adalah untuk menganalisis secara kuantitatif dan kualitatif serta tatacara penggunaan dan pemasangan sistem ini pada kenderaan jenis kereta kompak. Kajian ini menerangkan siasatan tentang risiko-risiko yang berkemungkinan terjadi pada sistem NGV yang dipasangkan pada kenderaan jenis kereta kompak antaranya punca kebocoran tangki simpanan, paip saluran, serta letupan yang boleh menyebabkan kehilangan harta benda dan nyawa. Dengan cara ini juga, serba sedikit cadangan dan penambahbaikan dapat dijalankan pada sistem ini pada masa akan datang. Kajian in juga mengandungi analisis tentang pengiraan kebarangkalian sesuatu bencana boleh berlaku samada melibatkan nyawa atau harta benda.

1.3 Objektif Kajian

Objektif untuk kajian risiko analisis NGV terhadap kereta kompak ini boleh dibahagikan kepada beberapa perkara, antaranya ialah;

- Menganalisis kajian kualitatif dan kuantitatif ke atas sistem NGV yang dipasang pada kereta kompak
- Mengkaji tentang ciri- ciri keselamatan pada sistem NGV yang dipasang pada kenderaan jenis kereta kompak.
- Mencadangkan beberapa peningkatan dan penambahbaikan pada sistem NGV ini.

1.4 Skop Kajian

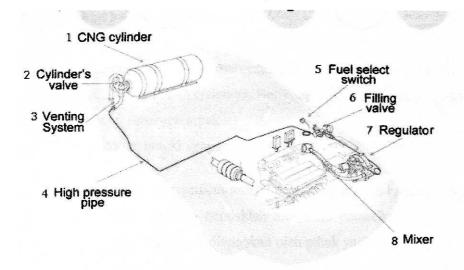
Skop utama untuk kajian ini ialah melakukan analisis risiko terhadap penggunaan sistem NGV pada kereta kompak. Kajian ini meliputi tahap keselamatan dan keselesaan sistem NGV serta beberapa kompenan utamanya dalam menghadapi sebarang kemungkinan di sebabkan bencana atau kegagalan dalam menjalankan fungsinya. Keseluruhan kajian ini meliputi;

- Kajian terhadap analisis kualitatif dan kuantitatif kepada kenderaan jenis kereta kompak.
- Kajian difokuskan juga terhadap perbezaan antara kualitatif dan kuatitatif dari segi kaedah dan data yang diperolehi.
- ➤ Menggunakan kaedah-kaedah yang telah ada dalam analisis kuantitatif dan kualitatif (FMEA dan ETA (Event Tree analysis))
- > Penggunaan perisian yang berkaitan dengan kajian kualitatif dan kuantitatif.

1.5 Rumusan

Secara keseluruhannya, kajian ini dapat membantu dalam meningkatkan tahap keselamatan sistem NGV pada masa akan datang. Sebagai pengguna juga, kita dapat mengetahui apakah tindakan-tindakan yang perlu diambil untuk mengelakkan sebarang kejadian yang tidak diingini berlaku pada sistem ini. Kajian ini juga dapat digunakkan sebagai rujukan atau kajian lain pada masa akan datang.

BAB II


KAJIAN ILMIAH

2.1 Latar Belakang NGV terhadap kereta kompak

NGV ialah satu sistem pembekalan bahanapi pada sesebuah kenderaan dengan menggunakan gas. Gas yang digunakan untuk sistem ini ialah gas asli yang di ambil bersama-sama dengan proses cari gali petroleum. Sebatian hidrogen yang biasa terdapat di dalam gas asli ini sebahagian besarnya ialah metana diikuti dengan propana dan butana. NGV juga dipanggil dengan nama lain iaitu CNG (compressed natural gas), LNG (Liquefied natural gas) dan LPG (Liquefied petroleum gas).

2.2 Proses Pembakaran NGV Pada Kenderaan Kompak

Penggunaan sistem NGV pada kenderaan dalam proses pemerolehan kuasa adalah dengan menggunakan konsep engin pembakaran dalam. Dalam proses pembakaran NGV yang optimum, peratus antara bahanapi NGV dan udara adalah 5%-15%, manakala petrol memerlukan 2.5%-7% isipadunya dalam udara untuk membakar. Ini menunjukkan pembakaran NGV mengandungi bahan api yang lebih berbanding udara. Disebabkan hal itu, kuasa yang dihasilkan oleh sistem NGV in kurang bebanding petrol. (Rujukan internet, 20/9/2008, www.internal cumbustion - professional in NGV.htm)

Rajah 2.1 – Laluan bahanapi NGV dari Tangki ke Enjin (rujukan internet, 15/9/2008, www.pro NGV - profesional in NGV. Hatm)

Rajah 2.1 menunujukkan aliran bahanapi NGV sebelum memasuki ruang pembakaran enjin. Berikut adalah penerangan mengenai aliran bahanapi ini;

- 1) Gas bahanapi NGV akan di alirkan ke sistem paip dengan pembukaan injap (cylinder's valve) pada tangki simpanan
- 2) Satu suis (fuel selecter switch) di ruangan pemandu akan diaktifkan untuk membolehkan gas bahanapi NGV menjadi sumber kepada enjin
- Gas bahanapi NGV di perlukan untuk pembakaran, ia akan melalui satu injap khas (shut-off valve / filling valve), dan mengalir ke bahagian enjin melalui sistem paip betekanan tinggi
- 4) Gas bahanapi NGV akan memasuki satu pengatur (*regulator*), dimana tekanan akan dikurangkan dari 3,600 psi menghampiri tekanan atmosfera.
- 5) Injap gegelung (solenoid valve) akan membenarkan gas bahanapi NGV melepasi pengatur (regulator) dan masuk ke penyalur bahanapi (fuel injector), dan bahanapi akan dibekalkan ke ruang pembakaran enjin.

2.3 Tahap keselamatan sistem NGV

Sistem bahanapi NGV merupakan antara sistem yang selamat digunakan untuk menjana kuasa pada kenderaan. Berikut adalah tahap keselamatan yang boleh diketahui melalui beberapa aspek

a) Pemeriksaan tangki simpanan NGV

- Untuk memastikan sistem penyimpanan gas bahanapi NGV selamat, para pengguna hendaklah menjalani pemeriksaan dalam satu jangka masa yang telah ditetapkan oleh pihak yang bertanggungjawab.
- Pemeriksaaan tangki simpanan ini bergantung kepada spesifikasi yang telah ditetapkan oleh pembuat atau pengeluar tangki tersebut.
 Terdapat tangki simpanan yang memerlukan pemeriksaan setiap tiga tahun dan ada juga yang perlu diganti dengan tangki yang baru selepas lima tahun.

b) Sistem penyimpanan

 Sistem penyimpanan gas bahanapi NGV ini diperbuat dari bahan yang kukuh iaitu besi dan komposit. Tangki simpanan ini dapat menahan kesan hentakan dan kesan haba lebih baik berbanding tangki gasolin atau petrol. Selain itu, tangki simpanan ini juga di lengkapi dengan injap gegelung (solenoid valve), dimana ia akn menutup sistem penyaluran apabila berlaku pelanggaran atau hentakan.

c) Suhu nyalaan yang tinggi.

 Gas bahanapi ini mempunyai suhu nyalaan yang lebih tinggi berbanding gasolin dan petrol. Ini boleh mengurangkan kadar nyalaan yang tidak disengajakan.

d) Tidak berbau.

 Dalam keadaan asalnya, gas bahanapi ini tidak berbau, tidak berwarna, tidak mempunyai rasa. Satu bahan pembau (mercaptin) di tambahkan dalam kandungan gas untuk mengesan jika berlaku kebocoran dalam sistem

e) Kadar pencemaran

 Gas bahanapi ini tidak bertoksik, tidak menyebabkan pengaratan dan tidak memberi kesan pada tumbuhan atau haiwan jika berlaku sedikit kebocoran. Hasil pembakaran bahanapi ini juga kurang menghasilkan gas yang boleh mencemarkan alam sekitar.