I/We* have read this thesis and from my/our* opinion thesis is sufficient in aspects of scope and quality for awarding Bachelor of Mechanical Engineering (Thermal Fluid)

Signature	
Name of Supervisor	FAIZIL BIN WASBARI
Date	. 15/5/2009

*Line which is irrelevant

STUDY OF "PALM OIL FIBER" FOR FILTRATION APPLICATION

VOON SHING LING

This report is presented in Partial fulfilment of the requirements for the Degree of Bachelor of Mechanical Engineering (Thermal Fluid)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > APRIL 2009

"I hereby, declare this thesis is result of my own research except as cited in the references"

Signature	:
Author's Name	: VOON SHING LING
Date	: 10/04/2009

To my beloved family

ACKNOWLEDGEMENT

This project would like not have been possible without the guidance and assistance of my final year project supervisor, En. Faizil Bin Wasbari. His dedication, support, high expectations of his students has provided me with the ability to successfully complete my research.

I would also like to thank UTeM for giving me this opportunity to take this final year project. I had learned lot extra knowledge about filter and fiber which out of the study syllabus.

Also, I would like to thank the engineer, En Razi and technicians of Salutary Avenue Manufacturing Services Sdn. Bhd. assist me to complete the testing.

Finally, I would like to thank my family and my friends for their patience and encouragement. They provided moral support and help that enable me to overcome rough times during the executive this project.

ABSTRACT

Current pre-filter for Air Handling Unit (AHU) is made by synthetic fiber such as glass-fiber, pleated media or polyurethane foam. The goal of this project is to diversify the existing filtration material by using palm oil fiber. Malaysia is the largest palm oil producer in the world, one of the major waste products is the Empty Fruit Bunches (EFB). We must fully use the waste products into useful final quality products is environmentally friend. To produce a natural fiber filter, some suitable treatment such as removing the residual oil and form the palm oil fiber into a mat form is needed. According to American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE), the measuring principle to test the pre-filter for AHU is gravimetric test method based on standard of ASHRAE 52.1. The results we need to obtain are the arrestance and efficiency of dust holding capacity of the filter. The objective can be achieved when the results of the arrestance is from 65% to 80% and efficiency of dust holding capacity is less than 20% for the testing.

ABSTRAK

Pra-penapis yang digunakan oleh Air Handling Unit (AHU) adalah dibuat daripada gentian semula jadi, gentian kaca, sintetik serat, perantaraan berlisu dan busa poliuretan. Projek ini dijalankan bertujuan untuk mempelbagaikan bahan penapisan sedia ada dengan menggunakan gentian tandan sawit. Malaysia adalah salah sebuah negara pengeluar minyak sawit terbesar di dunia dan ini mengakibatkan penghasilan sisa-sisa bahan buangan sawit dalam jumlah yang besar. Salah satu dari bahan buangan kelapa sawit adalah tandan dan buah kosong. Gentian kelapa sawit adalah dikeluarkan daripada bungkusan vascular kelapa sawit dalam tandan kosong. Projek ini cuba mengekploitasi bahan buangan tersebut menjadi bahan yang berguna dan menggunakan produk-produk bahan buangan ini dengan sepenuhnya. Rawatan yang bersesuaian terhadap gentian minyak sawit untuk membuang minyak sisa dan pembentukan yang sesuai diperlukan untuk menjadikan gentian semula jadi dalam bentuk kepingan nipis. Menurut "American Society of Heating, Refrigeration, and Air Conditioning Engineers" (ASHRAE), cara untuk menguji pra- penapis bagi AHU adalah sacara gravimetri. Cara gravimetri ini adalah mengikut piawaian ASHRAE 52.1. Keputusan yang diambil dalam ujian tersebut adalah arrestance dan efficiency bagi pra-penapis yang diuji.

TABLE OF CONTENTS

CHAPTER	TOPIC	PAGE
	VERIFICATION	ii
	DEDICATION	iii
	AKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF FIGURES	xiii
	LIST OF TABLES	xxi
	LIST OF SYMBOLS	xxiii
	LIST OF APPENDICES	xxiv

1.0	INTE	RODUCTION	1
	1.1	Background Study	1
	1.2	Problem Statement	2
	1.3	Objectives	2
	1.4	Scope	3

CHAPTER	TOPIC			PAGE
2.0	LITE	RATURE REVIEW		
	2.1	Air fil	ter	4
		2.1.1	Mechanical Filter	4
		2.1.2	Electrostatic Filter	6
		2.1.3	Activated carbon filters	7
		2.1.4	Air conditioning system	8
		2.1.5	Air handling unit (AHU)	10
	2.2	Natura	l Fiber	12
		2.2.1	Types of natural fiber	12
		2.2.2	Application of natural fiber	14
		2.2.3	Palm Oil Fiber	15
		2.2.4	Application of palm oil fiber mat	19
		2.2.5	Characteristic of palm oil fiber	21
		2.2.6	Grade of the palm oil fiber	29
	2.3	Natura	l Fiber Processing	30
		2.3.1	Process of palm oil fruit to palm oil fiber	30
		2.3.2	Treatment of palm oil fiber	36
	2.4	Ameri	can Society of Heating, Refrigeration, and Air	
		Condi	tioning Engineers (ASHRAE)	37
		2.4.1	ASHRAE 52.1-1992	37
		2.4.2	ASHRAE 52.2-1999	39
		2.4.3	Filter Testing Method	42

3.0	METH	HODOI	LOGY	48
	3.1	Literat	ure	49
	3.2	Proces	sing method (filter)	49
	3.3	Design	ing filter	50
	3.4	Find a	suitable treatment method	51
	3.5	Establi	sh experiment layout	51
	3.6	Sample	e preparation	52
	3.7	Setup		54
		3.7.1	Setup for test duct machine	54
		3.7.2	Setup for air permeability and pore size machine	55
		3.7.3	Setup for burst strength machine	56
	3.8	Run To	esting	56
		3.8.1	Run testing for test duct machine	56
		3.8.2	Run testing for air permeability and pore size	
			machine	57
		3.8.3	Run testing for burst strength machine	58
	3.9	Result	and data analysis	59
	3.10	Report	Writing	59
4.0	SAMI	PLE PR	EPARATION	60
	4.1	Introdu	action	60

4.2.1 Sterilization process 61

Process of making the sample

4.2

4.2.2 Shredding process 61

PAGE

61

CHAPTER TOPIC

4.2.3 Drying process624.2.4 Stitching process634.2.5 Cutting process654.3 Technical specification of palm oil fiber mat65

4.4	Composition	65
	composition	00

5.0 TESTING

66

5.1	Introduction				
5.2	Clean Device Performance Test	67			
5.3	Dust Holding Capacity testing	70			
	5.3.1 Air filter efficiency and arrestance	72			
5.4	Water spray test (Time)	72			
5.5	Air Permeability Test				
5.6	Pore size test				
5.7	Digital burst strength testing	80			
	5.7.1 Specification	80			
	5.7.2 Procedures	80			

6.0	RES	RESULT	
	6.1	Clean Device Performance Test	84
	6.2	Dust Holding Capacity testing	85
	6.3	Water spray test	87
	6.4	Air Permeability Test	88

PAGE

CHAPTER	TOPIC
CHAPTER	TOPIC

7.0	DATA	ANAL	VYSIS	89
	7.1	Introdu	action	89
		7.1.1	Filter specifications of palm oil fiber filter	
			and SA210	90
	7.2	Clean	Device Performance Test	90
		7.2.1	Data and graph analysis	91
	7.3	Dust H	olding Capacity testing	92
		7.3.1	Data analysis for dust holding capacity testing	93
	7.4	Water	spray test	94
		7.4.1	Data analysis for water spray test	96
	7.5	Air per	meability test	97

DISCUSSION 8.0 98 Sample preparation 98 8.1 99 8.2 Clean device performance Dust holding capacity test 99 8.3 100 8.4 Pore size test Burst strength test 8.5 101 8.6 Error during dust holding capacity test 102

9.0 CONCLUSION AND RECOMMENDATION

9.1	Conclusion	103
9.2	Recommendation	105

PAGE

9.2.1	Adding binder to the media	105	
9.2.2	Reduce the density of the palm oil fiber filter	105	
9.2.3	Reduce the thickness of the palm oil fiber filter	106	
9.2.4	Softening the palm oil fiber filter	106	
9.2.5	Use more advance burst strength machine	107	
9.2.6	Close the upstream of the test duct machine		
	during testing	107	

REFERENCES	108
BIBLIOGRAPHY	111
APPENDIX A	112
APPENDIX B	117
APPENDIX C	126
APPENDIX D	130

PAGE

xii

LIST OF FIGURES

NO	TITLE	PAGE
2.1	Electrostatic filter	6
2.2	Activated carbon filters (Source: <i>http://www.allerairsolutions.com/odor_problem.html</i> (2008)	7))
2.3	Activated Carbon (Source: <i>http://www.allerairsolutions.com/odor_problem.html</i> (2008)	7))
2.4	Schematic layout of an all-air system showing the disposition of an air handling unit (AHU) (Source: Ameen, A.,2006)	11
2.5	Components of an air handling unit (AHU) (Source: Ameen, A.,2006)	11
2.6	A door inner panel (Source: Holbery and Houston (2006))	15
2.7	Fresh Fruit Bunches (Source: <i>flickr.com/photos/realmild/</i> (2008))	15

2.8	Empty Fruit Bunches	16
	(Source: www.etawau.com/OilPalm/PulpPaperMill.htm (2008))	
NO	TITLE	PAGE
2.9	Palm oil fiber	16
	(Source: http://www.etawau.com/OilPalm/EFB.htm (2008))	
2.10	Building Material Application	17
	(Source: <i>http://www.fibre-x.com</i> (2000-2006))	
2.11	Automotive Door Panel	18
	(Source: http://www.fibre-x.com (2000-2006))	
2.12	Automotive Dashboard	18
	(Source: http://www.fibre-x.com (2000-2006))	
2.13	Interior Design works	18
	(Source: <i>http://www.fibre-x.com</i> (2000-2006))	
2.14	Outside use	18
2.14	(Source: <i>http://www.fibre-x.com</i> (2000-2006))	10
2.15	Architecture (Source: http://www.fibre-x.com (2000-2006))	18
	(Source. <i>mip.//www.jibre-x.com</i> (2000-2000))	
2.16	Mulching for plant	20
	(Source: EcoFibre Technology Sdn. Bhd)	
2.17	Fiber mat protect and enhances the growth of plants	20
	(Source: EcoFibre Technology Sdn. Bhd)	

2.18	Variation of tensile strength with fiber loading	24
	(Source: Jacob <i>et al.</i> 2006)	
NO	TITLE	PAGE
2.19	Variation of tensile strength with angle of orientation at	
	different levels of fiber loading	25
	(Source: Jacob et al. 2006)	
2.20	Variation of tear strength with fiber loading	26
2.20	(Source: Jacob <i>et al.</i> 2006)	20
2.21	Variation of elongation at break with fiber loading	27
	(Source: Jacob <i>et al</i> . 2006)	
2.22	Variation of modulus at 100% with fiber loading	27
	(Source: Jacob et al. 2006)	
2.23	Variation of tensile strength with fiber ratio	28
	(Source: Jacob <i>et al.</i> 2006)	_0
2.24	Bunch thresher	31
	(Source: http://www.fao.org/DOCREP (2008))	
2.25	Hydraulic press (manual)	34
	(Source: http://www.fao.org/DOCREP (2008))	
2.26	Gravimetric Test Methods	45
-	(Source: www.microfiltration.com.sg/07_data_c.html (2008))	-
3.1	Dimension of wood frame	50

3.2	Dimension of filter	50
3.3	Palm oil fiber filter	51
3.4 NO	Explode view for palm oil fiber filter TITLE	51 PAGE
3.5	Process flow of the making of fiber mat (EcoFibre Technology Sdn. Bhd.)	52
3.6	Front view of the palm oil fiber filter	53
3.7	Side view of the palm oil fiber filter	53
3.8	Test duct machine (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	54
3.9	Installation of palm oil fiber filter in the test duct machine (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	54
3.10	Installation the sample filter to the air permeability machine (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	55
3.11	Clamp the sample and ready to test for burst strength (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	56
3.12	Control panel for test duct machine (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	57
3.13	Burst strength machine (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	58
4.1	Process flows for the making of fiber mat (Source: EcoFibre Technology Sdn. Bhd)	60

61
PAGE
62
63

4.5	Stitching process and roller (Source: EcoFibre Technology Sdn. Bhd)	63
4.6	Drawing for stitching part	64
4.7	Dryer chamber (Source: EcoFibre Technology Sdn. Bhd)	64

4.2

NO

4.3

4.4

TITLE

Stitching machine

Sterilization machine

(Source: EcoFibre Technology Sdn. Bhd)

(Source: EcoFibre Technology Sdn. Bhd)

(Source: EcoFibre Technology Sdn. Bhd)

Fibers blow out to stitching machine

4.8	Palm oil fiber mat	65
	(Source: EcoFibre Technology Sdn. Bhd)	

5.1	Test duct machine	67
	(Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	
5.2	Upstream and downstream of the test duct machine	68
	(Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	

5.3Control panel for test duct machine68(Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)

Installation sample filter into test duct machine	69
	Installation sample filter into test duct machine

	(Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	
5.5	Test dust (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	70
NO	TITLE	PAGE
5.6	Process feeding dust (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	71
5.7	Water spray process (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	73
5.8	Enlarge picture for Figure 5.7 (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	73
5.9	Air permeability and pore size test machine (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	74
5.10	Sample filter cut in disc size for air permeability test (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	75
5.11	Put the disc with sample into air permeability machine (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	75
5.12	Display screen of air permeability machine (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	76
5.13	Sample filter cut in disc size for pore size test (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	77
5.14	Sample holder cover and holding disc for pore size test machine (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	77

5.15	Pour methyl alcohol into the hole of sample holder cover for 1/3 of full	78
	(Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	, 0
NO	TITLE	PAGE
5.16	A.P screen of pore size test machine (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	78
5.17	Burst strength test machine (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	81
5.18	LCD indicator and ZO/TH button (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	82
5.19	Method to test the burst strength of sample (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	82
7.1	Palm oil fiber filter (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	89
7.2	SA210 filter (synthetic fiber) (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	89
7.3	Graph of differential pressure versus air flow rated in clean device for palm oil fiber filter and SA210 filter.	91
7.4	Graph of Differential pressure versus weight dust feed for palm oil fiber filter and SA210 filter.	93
7.5	Graph of Differential Pressure versus Time for palm oil fiber filter an SA210 filter.	d 95

xix

7.6	Palm oil fiber filter after water test	96
	(Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	
7.7	Enlarge of Figure 7.6	96
/./	(Source: Salutary Avenue Manufacturing Services Sdn. Bhd.	70
NO	TITLE	PAGE
7.8	Graph of pressure versus air permeability for palm oil fiber filter	97
8.1	Some impurities drop from the fiber mat when shaking it	98
	(Source: EcoFibre Technology Sdn. Bhd)	
8.2	Pour the Methyl alcohol into the central cavity of the holder cover (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	100
8.3	The sample filter after burst strength test	101
	(Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	
8.4	The sample filter after burst strength test (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	101
8.5	Feeding the dust during dust holding capacity test (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	102
9.1	Current air filter (SA210) with zigzag design (Source: Salutary Avenue Manufacturing Services Sdn. Bhd.)	106

LIST OF TABLES

NO	TITLE	PAGE
2.1	Properties of sisal fiber (Source: Jacob <i>et al.</i> 2006)	
2.2	Properties of oil palm fiber (Source: Jacob <i>et al.</i> 2006)	23
2.3	The Standard provides a filter's initial efficiency in each of 12 different particle ranges (Source: <i>www.camfilfarr.com</i> (2002))	39
2.4	Application Guidelines (Source: www.camfilfarr.com and http://www.nafahq.org/LibaryFiles/Articles (2008))	41
2.5	Filter type, measuring principle, test standard (Source: www.microfiltration.com.sg/07_data_c.html (2008))	43
2.6	Coarse and Fine Dust Efficiency and Classification (Source: www.microfiltration.com.sg/07_data_c.html (2008))	44

2.7	MERV categories, the typical contaminant based upon particle size and the typical application (Source: <i>www.camfilfarr.com</i> (2002)	
NO	TITLE	PAGE
6.1	Data of clean device performance test	84
6.2	Data for dust holding capacity testing	85
6.3	Data for water spray test	87
6.4	Data of air permeability test	88
7.1	Filter specification	90
7.2	Airflow test data for Palm Oil Fiber Filter and current SA210 in clean device test	90
7.3	Dust Holding Capacity testing data for Palm Oil Fiber Filter and SA210 at airflow 2000 ft3/min	92
7.4	Water test data for Palm Oil Fiber Filter and SA210 at airflow 2000 ft3/min	94
7.5	Data weight water content for Palm Oil Fiber Filter and SA210 after 70 minutes spray water.	95

LIST OF SYMBOLS

Е	=	Arrestance
η	=	Efficiency
M_d	=	mass of dust fed to the filter
M_{f}	=	final mass of the final filter
M_{i}	=	pretest weight of the final filter