DEVELOPMENT OF LOW POWER AIR-CONDITIONING USING WATER CHILLED SYSTEM

MOHD SHAZNI BIN AMERISAH

This Report Is Submitted In Partial Fulfillment of Requirement for the Bachelor Degree

of Mechanical Engineering (Thermal Fluid)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

APRIL 2009

"I admit to have read this report and it has followed the scope and quality in Partial Fulfillment of Requirement for the Degree of Bachelor of Mechanical Engineering (Thermal Fluid)"

Signature	:
Supervisor Name	: ENCIK. SAFARUDIN
	GHAZALI HERAWAN

:

Date

AGREEMENT

"I agree that this report is my own work except for some summaries and information which I have already stated"

Signature	:
Name	: MOHD SHAZNI BIN AMERISAH
Date	: APRIL 2009

Untuk Ibu Dan Ayah Tersayang.... Hanya Engkau Sahaja Ilham hidup Ku.... Akan Ku Buktikan Kepadamu.... Yang Aku juga boleh Berjaya seperti Orang lain....

ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to Universiti Teknikal Malaysia Melaka (UTeM), for giving me this valuable opportunity to undergo "*Projek Sarjana Muda*". Thanks a lot especially to Mr. Ahmad Kamal who always guide and give me opportunity for selecting the title for my "*Projek Sarjana Muda*". Where he was already prepare the titles for student. Without this opportunity, I will never gain any experience and knowledge about the works which related to mechanical engineering.

Thanks a lot also especially to my main supervisor Mr. Safarudin Ghazali Herawan who always guides me and teaches me in the past two semesters. I really appreciate the kindness of him in exposing me to the world of engineering, the duties and the responsibilities as a lecturer even though they very busy with their own work.

I would also like to thank to all lecturers Faculty of mechanical engineering and all staff and technicians, Mr Asjufri who give advice to me about the project that I done. Not forgetting also to thank all friends who always keen to help when I faced any problems. Thanks a lot also to Universiti Teknikal Malaysia Melaka (UTeM), because guide me regarding to "*projek Sarjana Muda*" from initial until end of the Project.

Lastly, I will always remember all the knowledge and this great that I gained during undergo "*projek Sarjana Muda*". Without the helps from all of them, I believe that I could not successfully accomplish my report...Thanks.

ABSTRACT

Nowadays, most of the building was using the air conditioning refrigeration systems for a cooling down the temperature inside of the room. However, the air conditioning refrigeration systems is using more electric consumption. To reduce electric consumption, researcher in Thermal energy storage was already done for reduce energy costs by allowing energy intensive. A survey of approximately 25 manufacturers was already using thermal energy storage also know as "Ice ball Thermal energy storage". The oldest form of energy storage involves harvesting ice from lakes and a river, which was stored in well insulated warehouses and sold or used throughout the year for almost everything. In Generally, Cool storage technology can be used to significantly reduce energy costs by allowing energy intensive, electrically driven cooling equipment to be predominantly operated during off-peak hours when electricity rates are lower. For this studying, investigates about the applications, methodology, components of the ice ball thermal energy, advantages and disadvantages of this system would be discuss and explained.

ABSTRAK

Pada masa kini, kebanyakan bangunan adalah menggunakan sistem penyejukan penyamanan udara untuk menyejukkan suhu di dalam. Bagaimanapun, Sistem penyejukan penyaman udara menggunakan lebih tenaga elektrik. Untuk mengurangkan penggunaan tenega elektrik, penyelidik dalam penyimpanan tenaga haba telah pun dibuat untuk mengurangkan kos tenaga dengan membenarkan tenaga intensif. Satu kajian kira-kira 25 orang pengeluar adalah telah menggunakan terma simpanan tenaga juga diketahui sebagai "Ice ball Thermal energy storage". Penyimpanan tenaga sejuk adalah bentuk paling lama simpanan tenaga melibatkan menuai ais daripada tasik-tasik dan sebatang sungai, yang telah disimpan dalam gudang-gudang betul-betul ditebat dan berjual atau terpakai sepanjang tahun. Secara umumnya, teknologi penyimpanan tenaga sejuk boleh digunakan untuk mengurangkan kos tenaga dengan membenarkan tenaga intensif, kelengkapan penyejukan elektrik dipandu menjadi lebih banyak beroperasi semasa waktu tidak sibuk apabila kadar elektrik adalah rendah. Untuk pembelajaran ini, kajian mengenai aplikasi-aplikasi, kaedah, komponen-komponen menyejukkan tenaga haba bola, kelebihan-kelebihan dan keburukan-keburukan sistem ini akan dibincangkan dan dihuraikan.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	AGREEMENT	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiii
	LIST OF SYMBOLS	xvii

CHAPTER I	INTRODUCTION	1
	1.1 Background of Study	1
	1.2 Objective	2
	1.3 Scope	2
	1.4 Problem statement	3
	1.5 Analysis the Problem	3
	1.6 Important of the Project	3

CHAPTER II LITURATURE REVIEW

2.1 A Short History of Energy Storage	5
2.2 Explanation about literature review	6
2.3 Ice ball thermal energy in a building	7
2.3.1 Water based technology	7
2.3.2 Economics	7
2.3.3 Air conditioning	8
2.4 Operation of Ice Ball	
thermal Energy Storage System	12
2.4.1 Discharge - Ice Melting	12
2.4.2 Charge - Ice Building	13
2.4.3 Standby	14
2.5 Components of Ice Ball	
thermal Energy Storage.	15
2.5.1 Chiller Water System	15
2.5.2 Pump	16
2.5.3 Storage	16
2.5.4 Ice Balls	18
2.5.4.1 Ice Ball Dimples	
Allow for Expansion	18
2.6 Coefficient of Performance (COP)	19
2.6.1 Coefficient of Performance of	
actual refrigeration	19
2.6.2 Coefficient of Performance	
for ice ball thermal	
energy storage system	21
2.7 Comparison between are refrigeration	
systems with Ice Balls thermal	
storage systems	22
2.8 Advantages of Ice Balls	
thermal Energy Storage system	23
2.9 Component of Ice Balls	
thermal storage	24

5

2.9.1 Cool water	24
2.9.2 Chilled water	24
2.9.3 Evaporator	24
2.9.4 Pump	24
2.9.5 Fan	25
2.9.6 Storage room	25
2.9.6.1 Ice Balls	25
2.9.7 Piping System	25
2.10 Ice ball system in a Split unit	26

CHAPTER III METHODOLOGY 28

3.1 Split Unit	28
3.2 Study procedure	29
3.3 Experiment Procedure	30
3.3.1 Sketch the split unit system	31
3.3.2 Prepare material or	
components needed	31
3.3.3 Install the components	31
3.3.4 Recheck the components	32
3.3.5 Run the system	32
3.4 Components of Ice ball	
split System	32
3.4.1 Storage	32
3.4.2 Motor and Pump	33
3.4.3 Evaporator	33
3.4.4 Chiller water	33
3.4.5 Piping system	34
3.4.6 Thermocouples	35
3.4.7 Pressure gauge	35
3.5 Properties of Moist Air	36
3.5.1 Psychometric Properties	36

3.5.2 Specific Humidity or humidity Ratio	36
3.5.3 Relative Humidity	37
3.5.4 Enthalpy of Moist Air	38
3.5.5 Wet Bulb Temperature (WBT)	39
3.5.6 Humid Specific Heat	41
3.6 Psychrometry of Air-Conditioning Process	42
3.6.1 Mixing Process	42
3.6.2 Mixing with Condensation	44
3.6.3 Basic Process in Conditioning of Air	45
3.6.4 Total Heat Process	46
3.6.5 Sensible Heat Factor (SHF)	47

4.1 Cylinder ice (pure water)	49
4.1.1 Actual Process	50
4.1.2 Heat transfer	52
4.2 Brite ice	57
4.3 Two brite ice mix with ice (pure water)	62
4.4 Periphery copper at outside tube	
(0.25 meters length)	68
4.5 Periphery copper (0.25 meters length)	73
4.6 Periphery copper (2 meter length)	79
4.7 Coefficient of performance	
for all experiments	84
4.8 Electric consumption	86
4.8.1 Conventional air conditioning	
system (refrigeration system)	86
4.8.2 Thermal energy storage	87
4.8.3 Percentage of profit	88

CHAPTER IV RESULT AND ANALYSIS

49

CHAPTER V DISCUSSION

5.1 Ice, flow rate, and time	90
5.2 Comparison between systems A	
and system B	91
5.3 Coefficient of performance	92
5.4 Saving	93

CHAPTER VI CONCLUSION 94

6.1 Conclusion	94
6.2 Summary of project	94
6.3 Problems & Challenges Faced	95
6.4 Recommendation	95

REFERENCES	97
APPENDIX A	98
APPENDIX B	100
APPENDIX C	101
APPENDIX D	102

90

LIST OF TABLE

TABLE	TITLE	PAGE
3.1	Properties of Thermal conductivity	34
4.1	Temperature (Cylinder ice, pure water)	51
4.2	Coefficient of Performance with outside Temperature	55
4.3	Temperature for Brite ice	58
4.4	Coefficient of Performance with outside temperature	61
4.5	Two Brite ice mix ice (pure water)	64
4.6	Coefficient of Performance for two brite ice mix pure water ice	66
4.7	Time and Temperature (Copper 0.25 meters length)	69
4.8	Coefficient of performance (Copper 0.25 meters length)	72
4.9	Temperature (Periphery copper 0.25 meters)	74
4.10	Coefficient of Performance (Periphery copper 0.25 meters)	77
4.11	Temperature (Copper 2 meter length)	80
4.12	Coefficient of performance (Copper 2 meter length)	83

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Graph of Electric cost from midnight (off-peak) until day time (on-peak)	8
2.2	Graph of 100 ton chiller typical operation (in tons of cooling) (no TES)	9
2.3	Graph of 100 ton chiller typical operation with TES in partial storage mode	9
2.4	Graph of 100 ton chiller typical operation with TES in full storage mode	10
2.5	Graph of Air Conditioning load	11
2.6	Discharge mode	12
2.7	Charge mode	13
2.8	Standby mode	14
2.9	Thermal energy storage	14
2.10	Chiller system	15
2.11	Glycol Chiller Systems	15
2.12	Thermocline	16
2.13	Storage systems	17
2.14	Ice Ball	18
2.15	Actual refrigeration	19
2.16	Illustration of an Actual refrigeration: The simple vapor compression system	19

2.17	Refrigeration without any work input (impossible)	20
2.18	Comparison in Cooling Systems	22
2.19	Advantages of Ice Balls thermal storage System	23
2.20	Sample of Split Unit System	27
3.1	Split Unit System	28
3.2	Study procedure	29
3.3	Experiment Procedure	30
3.4	Storage	33
3.5	Power 600 gallon per hour	33
3.6	Glycol / Water Heat Transfer Systems	34
3.7	Thermocouple	35
3.8	Pressure gauge	36
3.9	Graph of change of state of water Vapor in air flowing over a wet Bulb Thermometer	40
3.10	Flow of air over the Wick-Covered bulb of a Wet Bulb Thermometer.	41
3.11	Adiabatic mixing of air streams	43
3.12	Mixing Process on Psychorometric Chart	44
3.13	Adiabatic mixer with Condensation	44
3.14	Mixing process with Condensation.	44
3.15	Basic Psychrometric Processes	46
3.16	Total Heat Process	48
4.1	Experiment 1	50
4.2	Graph of Outside Temperature against Time (Cylinder ice, pure water)	51
4.3	Actual Process	52

4.4	Graph of Coefficient of Performance against Outside Temperature for Cylinder ice (pure water)	56
4.5	Experiment 2	57
4.6	Graph of Outside Temperature against time for one brite ice	58
4.7	Graph Coefficient of Performance against Outside Temperature on 1 brite ice	61
4.8	Experiment 3	63
4.9	Graph of Outside Temperature against time for two brite ice mix ice (pure water)	64
4.10	Graph of Coefficient of Performance against Temperature out for two brite ice mix ice (pure water)	67
4.11	Experiment with copper 0.25 meters length (a)	68
4.12	Graph of Outside Temperature against Time (Periphery copper at outside tube) (a)	69
4.13	Graph of Coefficient of Performance against Temperature (periphery copper at outside tube) (a)	72
4.14	Experiment with copper 0.25 meters length (b)	73
4.15	Graph of Outside Temperature against Time (periphery copper at outside tube) (b)	74
4.16	Graph of Coefficient of Performance against outside Temperature (periphery copper at outside tube) (b)	77
4.17	Experiment with copper 2 meters length	79
4.18	Graph of Outside Temperature against Time (periphery copper 2 meters at outside tube)	80
4.19	Graph of Coefficient of Performance against outside Temperature (periphery copper 2 meters at outside tube)	83
4.20	Graph of Coefficient of performance against outside temperature for all experiment	84
4.21	Graph of Coefficient of performance against time for all experiments	85

4.22 Clamp meter

86

LIST OF SYMBOLS

ρ	Density
Cp	Constant Pressure
K	Thermal Conductivity
α	Thermal Diffusivity
ω	Specific Humidity
m _a	mass
ṁ	Specific mass flow rate
ϕ	Relative humidity
V	Volume
Т	Absolute Temperature
v_{v}	Specific volume
Р	Pressure
μ	Dynamic viscosity, head coefficient, Degree of saturation
h	Enthalpy
f_{g}	Heat-transfer coefficient of the air film around the wetted surface
Α	Area
k_{d}	Mass transfer coefficient of water vapor
$h_{\scriptscriptstyle fg}$ '	Enthalpy of vaporization
\mathbf{Q}_{L}	Latent heat transfer
Qs	Sensible heat transfer
Q	Heat transfer rate
W	Work
COP	Coefficient of Performance
h	Enthalpy
	C_p K α ω m_a \dot{m} ϕ V T v_v P μ h f_g A k_d h_{fg} ' Q_L Q_s Q W COP

CHAPTER I

INTRODUCTION

1.1 Background of Study

Nowadays, refrigerator system is most popular used at many home in this world compare than Thermal Energy storage System (TES). As we know, air conditioning was used for cooling down the temperature in the room, and the same time could heat the room depend on the situation. However, power usage per unit kW per hour (kW/h) is big and than need more energy to generate it.

However, system Thermal Energy Storage (TES) was already produced to overcome these problems. In general, Energy storage is employed in solar thermal energy systems to shift excess energy produced during times of high solar availability to times of low solar availability. Two situations exist in solar energy system design where energy storage may be needed; for the situation in which some of the solar thermal energy produced during the day is stored for use later during the night, and to provide energy during events such as cloudy days.

Ice Balls thermal storage is an initiative to overcome these high power usage problems. Actually, Ice Balls thermal storage is created to change air conditioning using refrigerant (R132) and change it to cool water using chilled water. Ice thermal storage is an electric load shifting technology used to reduce cooling energy costs. Working is like a battery, an ice storage system stores cooling energy at night when electric costs are low and uses that stored energy to cool a building the next day when electric costs are high. Depending on the situation, type of installation and offpeak electric rates available, ice storage can cut electric cooling costs dramatically. In addition, ice storage shifts cooling loads from low efficiency peaking generators during the day to high efficiency base load generators at night, thereby reducing fossil fuel use and air pollution.

1.2 Objective

Consist of several objectives regarding to the title of this project. The objective is:

- 1. To develop "saving power energy using Ice ball Thermal storage system"
- 2. To Determine the Coefficient of Performance (COP) of Ice ball Thermal storage system.

1.3 Scope

Scope of this title is:

- 1. To produce Split unit for ice ball thermal energy storage system.
- 2. To compare rate cooling can be remove within building with air conditioning split unit system.
- 3. Literature review based on the Journals, article, and other references.
- 4. To describe about operation of the ice ball thermal energy storage system.
- 5. To make comparison between refrigeration systems with thermal energy storage system.
- 6. To describe about components is needed in thermal energy storage.
- 7. To describe advantages and disadvantages of this system compare to the air conditioning refrigeration system.

1.4 Problem Statement

Power electric energy is most important thing and very useful for daily activity. However, electric power must be control for make sure no wasting in power energy. For control the electric power, a researcher was already done produce some product like are solar energy and thermal energy storage system for avoid wasting in power electric energy.

Nowadays, for saving the power electric energy, solar energy is used. Where solar energy can absorbs energy from sun energy. So, when the night time the energy from the solar will be used, for instance is for generate the light of the lamp. Talking about the sun energy, building or room would be hot when exposed to sun energy. For this case, refrigeration system or air conditioning system is used for cooling down the temperature of the building or room. But, how long these system will be used.

From the research of power electric energy usage, electric energy rate is highest begin 8am until 5pm just for air conditioning system. So, for solve this case or electric usage problem, ice ball thermal energy storage system is used for replace the air conditioning system.

1.5 Analysis the Problem

Refrigeration system is used for cooling down the temperature inside of the room or building. However, this system consists of several problems and the main problem is rate of electric energy usage is highest or electric consumption is big.

1.6 Important of the Project

Main source of energy was already exist in the world can not be neglect but could be change with new source of energy. Ice ball thermal energy storage system is one system where can be improve the performance of air conditioning refrigeration system. Same like the refrigeration system, fresh air and cool air could be produce using this system, and just the component in both systems is different. From this research, we would know advantages and disadvantages using the refrigeration system and the same time will know the advantages disadvantages using ice ball thermal energy storage system. Furthermore, we also would know components is needed is this system.

CHAPTER II

LITURATURE REVIEW

2.1 A Short History of Energy Storage

The oldest form of energy storage involves harvesting ice from lakes and rivers, which were stored in well insulated warehouses and sold or used throughout the year for almost everything, we use mechanical refrigeration for today, including preserving food, cooling drinks, and air conditioning.

Chemically-charged batteries became quite common in the mid-nineteenth century to provide power for telegraphs, signal lighting, and other electrical apparatus. By the 1890s central stations were providing both heating and lighting, and many did both. Electric systems were almost all direct current (DC), so incorporating batteries was relatively easy. In 1896, Toledo inventor Homer T. Yaryan installed a thermal storage tank at one of his low temperature hot water district heating plants in that city to permit capturing excess heat when electric demand was high. Other plants used steam storage tanks, which were not as successful for some reason.

Other forms of energy storage were used to power street cars in the 1890s, including compressed air and high temperature hot water that was flashed into steam to run a steam engine. Electric cars and trucks were quite common prior to World War I until gasoline-powered internal combustion engines ran them off the road.

Energy storage has always been closely associated with solar installations, including both solar heating and photovoltaic (PV) applications. Today you can find compressed air storage, batteries, chilled and hot water storage, ice storage, and the occasional fly well in use, all designed to meet one or more of the purposes listed above. Many utilities provide incentives for energy storage applications, while time-of-day rates and stiff demand charges also entice customers to consider these opportunities

2.2 Explanation about Literature Review

Research about cooling system was already done by a researcher in several methods for cooling purpose. However, many types of cooling system were using high electric energy for instance is refrigerant system. In most journals about cooling system, researcher had been writing down the several types of systems regarding to the cooling system. There are refrigeration systems and the thermal energy systems like ice ball thermal energy storage. In journal about the ice ball thermal energy storage, researcher had been discuss about many kind of problems encountered regarding to the accomplished the new system. However, researcher was created one system where could overcome the main problem, there is a high demand electric energy.

Nowadays, ice ball thermal energy storage system is most popular used in a building for cooling purpose compare than the refrigeration system. This is because, with using this system, rate of electric energy per day could be decrease.

Therefore, in this research which is regarding to the ice ball thermal energy storage system, the author would be produce one split unit ice ball system for make comparison between ice balls system in a building with ice ball system in a split unit. For execute and for easily this task, the author would explain about the ice ball thermal energy storage system in a building first.

2.3 Ice Ball Thermal Energy in a Building.

2.3.1 Water Based Technology

Thermal energy storage is made practical by the large heat of fusion of water. One metric ton of water, just one cubic meter, can store 334 MJ (317 k BTUs, 93kWh or 26.4 ton-hours). In fact, ice was originally transported from mountains to cities for use as a coolant, and the original definition of a "ton" of cooling capacity (heat flow) was the heat to melt one ton of ice every 24 hours. This is the heat flow one would expect in a 3,000 square foot house. Either way, an agreeably small storage facility can hold enough ice to cool a large building for a day or a week, whether that ice is produced by anhydrous ammonia chillers or hauled in by horsedrawn carts.

2.3.2 Economics

Ice ball thermal energy storage can be used for reduce electric power per day. A kilowatt-hour of electricity consumed at night can be produced at much lower marginal cost. Utilities have begun to pass these lower costs to consumers, in the form of Time of Use (TOU) rates, or Real Time Pricing (RTP) Rates. Thermal energy is cheaper than any other energy source. Unfortunately, since using the refrigeration system as air conditioning, rate of electric energy demand is higher and is responsible for creating extraordinarily high prices in the electricity business.