GSM RADIO NETWORK PLANNING AND IMPLEMENTATION

NUR HAZWANI BINTI ZAIDOON

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > April 2009

C Universiti Teknikal Malaysia Melaka

AL MALAYSIA ME	UNIVERSTI TEKNIKAL MALAYSIA MELAKA	
FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER		
BORANG PENGESAHAN STATUS LAPORAN		
FAKULTI KE	PROJEK SARJANA MUDA II	
Tajuk Projek : GSM RADI	O NETWORK PLANNING AND IMPLEMENTATION	
Sesi Pengajian : 2005/2009		
Saya NUR HAZWANI BINTI ZAI	DOON	
	(HURUF BESAR)	
mengaku membenarkan Laporan Projek Sarj berikut:	jana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti	
1. Laporan adalah hakmilik Universiti Te	knikal Malaysia Melaka.	
2. Perpustakaan dibenarkan membuat sali		
 Perpustakaan dibenarkan membuat sali Sila tandakan (√): 	inan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.	
4. Sha tandakan (V):		
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)	
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)	
√ TIDAK TERHAD		
	Disahkan oleh:	
(TANDATANGAN PENULIS		
Alamat Tetap: 10, JLN CEMPAKA 6 TMN CEMPAKA 48200 SERENDAH SELANGOR		
Tarikh:	Tarikh:	

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature	:
Author	NUR HAZWANI BINTI ZAIDOON
Date	. 30 th APRIL 2009

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours."

Signature	:
Supervisor's Name	· CIK NURMALA IRDAWATY BINTI HASSAN
Date	. 30 th APRIL 2009

To beloved mom and dad

ACKNOWLEDGEMENT

Alhamdulillah, all Praise to thank to Allah SWT the Almighty for giving me an opportunity to finish my Project Sarjana Muda successfully. Special thanks to my supervisor, Cik Nurmala Irdawaty Hassan for giving me a full support and patiently supervising my progress during this project and all Celcom (M) Bhd Mobile Access Department's staff for giving their full support, experiences sharing and cooperation during the project. I also would like to thank my beloved friends for their support and friendship for the whole four years since I've been in UTeM. Last but not least, I would like to thank my family especially my parents for their encouragement and advices.

ABSTRACT

This purpose of this project is to build-up a new Global System for Mobile communications (GSM) radio network area that having high traffic density. The new network will overcome this traffic congestion problem and provide enough capacity with good grade of service. The main objective of this project is to provide an optimum solution in term of cost, traffic capacity and grade of service. Planning process begins with traffic analysis to determine the problem and design the new radio network. The design should consist of capacity, frequency and coverage planning. Capacity is planned based on channel utilization and it will provide enough capacity cater the overloaded of its utilization. Frequency planning is done to set a new frequency to the new radio network. The frequency need to plan wisely to avoid interference with the other sites or radio network. Then, coverage planning is done to provide good handover to neighbor cells. Then the system will implement and optimize to observe its performance. Optimization is done by tilting the antenna direction or adjusting the frequency. The system will be tuned until it meet users requirement.

ABSTRAK

Projek ini bertujuan untuk membina rangkaian radio Global System untuk komunikasi telefon bimbit (GSM) yang baru dikawasan yang mempunyai kepadatan trafik yang tinggi. Rangkaian radio yang baru ini akan mengatasi masalah trafik yang berlebihan dan menyediakan kapasiti rangkaian yang cukup dengan kualiti servis yang baik. Objektif utama projek ini adalah untuk menyediakan penyelesaian yang optimum dari segi kos, kapasiti trafik dan kualiti servis. Proses merancang dimulakan dengan analsis kepadatan trafik untuk mengenalpasti masalah dan mereka rangkaian radio yang baru. Rekaan ini terdiri daripada merancang kapasiti, frekuensi dan liputan. Kapasiti dirancang berdasarkan pengunaan saluran dan ia akan menyediakan kapasiti yang cukup untuk menampung lebihan beban pengunaan saluran berkenaan. Perancangan frekuensi pula dilakukan untuk membolehkan komunikasi diantara rangkaian radio yang baru dengan rangkaian radio yang sedia ada. Frekuensi perlu dirancang dengan baik untuk mengelakkan pertindihan dengan frekuensi rangkaian radio yang lain. Selepas itu, perancangan liputan dilakukan untuk menyediakan interaksi yang baik dengan rangkain bersebelahan. Sistem akan dilaksanakan dan ditalakan untuk memerhatikan keberkesanannya. Talaan dilakukan dengan mengubah arah antena atau mengubah frekuensinya. Sistem akan ditalakan sehingga memenuhi kehendak pelanggan.

CONTENTS

CHAPTER	TITL	JE	PAGE
	PRO.	JECT TITLE	i
	STAT	FUS REPORT FORM	ii
	STU	DENT DECLARATION	iii
	SUP	ERVISOR DECLARATION	iv
	DED	ICATION	\mathbf{v}
	ACK	NOWLEDGEMENT	vi
	ABC'	TRACT	vii
	ABST	ГКАК	ix
	CON	TENTS	X
	LIST	COF TABLES	xiii
	LIST	COF FIGURES	xiv
	LIST	OF ABBREVIATION	xviii
	LIST	OF APPENDICES	XX
I	INTF	RODUCTION	1
	1.1	Project Overview	1
	1.2	Objectives	2
	1.3	Problem Statement	2
	1.4	Project Scope	2
	1.5	Methodology	3
	1.6	Organization of Thesis	4

LITERATURE RIVIEW

II

2.1	Cellul	Cellular System	
	2.1.1	Second Generation Mobile Network (GSM)	5
	2.1.2	Cell Concept	6
	2.1.3	Channel Concept	8
		2.1.3.1 Traffic Channel (TCH)	8
		2.1.3.2 Control Channel (CCH)	9
2.2	Radio	Cell and Wave Propagation	10
2.3	Wave	Propagation Effects and Parameters	13
	2.3.1	Free Space Loss	13
	2.3.2	Radio Wave Propagation Concepts	15
2.4	Traffi	c Dimensioning	19
	2.4.1	Telecommunication Traffic	19
	2.4.2	Erlang	20
	2.4.3	Grade of Service (GoS)	21
	2.4.4	Channel Configuration	22
	2.4.5	Channel Utilization Efficiency	24
2.5	Capac	ity Enhancement Techniques	27
2.6	Basic	of GSM Radio Network Planning	29
	2.6.1	The Scope of Radio Network Planning	29
	2.6.2	Elements in a Radio Network	30
		2.6.2.1 Mobile Station (MS)	30
		2.6.2.2 Base Transceiver Station (BTS)	31
2.7	Radio	Network Planning Process	32
	2.7.1	Traffic and Coverage Analysis	32
	2.7.2	Nominal Cell Plan	33
	2.7.3	Surveys	33
	2.7.4	System Design	34
	2.7.5	Implementation	34
	2.7.6	System Tuning	35

5

2.8	Antenna Selection		35
	2.8.1	Definition	36
	2.8.2	Base Station Antennas	39
		2.8.2.1 Omni Directional Antennas	39
		2.8.2.2 Directional Antennas	41
	2.8.3	Omni Directional vs. Directional Antenna	43

III METHODOLOGY

44

3.1	Developing a Site – Process Flow		44
3.2	Traffic Monitoring		46
	3.2.1	MapInfo Professional	47
3.3	Deskt	op Planning	48
	3.3.1	Masterplan	49
	3.3.2	Determining Antenna Height and	49
		Antenna Beamwidth	
	3.3.3	TRX Combination	51
	3.3.4	Frequency Spectrum	51
3.4	Site S	urvey	53
	3.4.1	Site Identification Package (SIP)	55
3.5	Cover	rage Prediction	56
	3.5.1	TEMS Cell Planner (TCP)	56
	3.5.2	Coverage Prediction Using TEMS Cell Planner	57
	3.5.3	Site Identification Form (SIF)	67
3.6	Frequ	ency Planning	68
	3.6.1	Frequency Planning Using TEMS Cell Planner	68
3.7	Equip	ment Installation and Testing	71
	3.7.1	Equipment Required	71
		3.7.1.1 Antennas	71
		3.7.1.2 Base Transceiver Station (BTS)	72

		3.7.1.3 Feeder Cable	73
		3.7.1.4 Microwave Antenna	73
	3.7.2	Site Design Package (SDP)	74
	3.7.3	Site Design Data (SDD)	75
3.8	Drive	Test	77
	3.8.1	TEMS Investigation (TI)	78

IV CASE STUDY AND RESULTS

80

4.1	Traffic Analysis	80
4.2	Desktop Planning	81
4.3	Site Survey	83
4.4	Coverage Plot	87
4.5	Equipment Installation	89
4.6	Frequency Assignment	90
4.7	Cost Estimation	92

VCONCLUSIONS AND RECOMMENDATIONS93

5.1	Conclusion	93
5.2	Recommendations	95

REFERENCES 96

APPENDIX A	98
APPENDIX B	100
APPENDIX C	101

APPENDIX D	102
APPENDIX E	103

LIST OF TABLES

NO TITLE

PAGE

2.1	Traffic Distribution Over 5 Cells	25
2.2	Comparison between Capacity Enhancement Techniques	28
2.3	Comparison between Omni Directional and Directional Antenna	43
3.1	Frequency Band for Celcom (M) Bhd	52
4.1	Planned Details for New Site	82
4.2	Details for New Site after Site Survey	84
4.3	Equipment Installed	89
4.4	Frequency Assigned	90
4.5	Neighbor List	91
4.6	Cost Estimation for Fakulti Kejuruteraan Kimia	92

LIST OF FIGURES

NO TITLE

PAGE

2.1	GSM Network Architecture	6
2.2	Omni Site	7
2.3	Sector Site	7
2.4	Half-rate Channel	9
2.5	Hierarchical Cell Structure	11
2.6	(a) Monopole and (b) Tower Structures	11
2.7	Rooftop Structure	12
2.8	Radio Propagation in Free Space	13
2.9	Radio Wave Reflections	15
2.10	Diffraction of Radio Wave Propagation through Urban Area	17
2.11	Radio Wave Diffraction in Rural Area	19
2.12	Comparison of Traffic at Different Time	20
2.13	Channel Configuration	22
2.14	Erlang B Table for Example of Calculation	23
2.15	Erlang B Table	25
2.16	Relationships between Erlangs and Number of Channel	26
2.17	The Scope of Radio Network Planning	29
2.18	Block Diagram of a GSM mobile station	30
2.19	Mobile Phone with SIM card	30
2.20	Ericsson RBS 2106 BTS	31
2.21	Block Diagram of a BTS	31

2.22	Radio Network Planning Process	32
2.23	Antenna Polarizations	36
2.24	E-plane and (b) H-plane	37
2.25	3-D Graphs	37
2.26	Antenna Gain vs. Half-power Beamwidth	38
2.27	(a) Omni directional and (b) Directional Antenna	39
2.28	Signal Received by Omni Antenna	40
2.29	(a) Horizontal and	
	(b) Vertical Omni directional Antenna Radiation Pattern	40
2.30	Sector Antenna	41
2.31	(a) Horizontal and	
	(b) Vertical Directional Antenna (90°) Radiation Pattern	42
2.32	(a) Horizontal and	
	(b) Vertical Directional Antenna (65°) Radiation Pattern	42
3.1	Process Flow of Developing a New Site	46
3.2	Traffic Monitoring Process	47
3.3	Analysis Using MapInfo	48
3.4	Rural Area	49
3.5	Urban and Suburban Areas	50
3.6	(a) VSAT and (b) Microwave Antenna	51
3.7	Global Positioning Systems (GPS)	53
3.8	Location of Proposed Site in MapInfo	54
3.9	Compass	55
3.10	Important Details of SIP	55
3.11	TEMS Provided by Ericsson	56
3.12	Setting Map Properties	57
3.13	Use "Select Cursor" To Select the Neighbors Sites	58
3.14	Selected Sites	59
3.15	To Calculate Pathloss	60
3.16	List of Sites Involved	60
3.17	Calculating Best Server for the New Site	61

3.18	Best Server Analysis Window	62
3.19	TCP Legends for Coverage Prediction	62
3.20	Coverage Area Predicted After the Installation of New Site	63
3.21	Remove BKTLAREK from Coverage Prediction	64
3.22	Coverage Prediction before the New Site is Commission	65
3.23	Selecting BKTLAREK Only	66
3.24	Stand Alone Coverage Prediction	67
3.25	BCCH and TCH	68
3.26	Editing Frequency in ARFCN Window	69
3.27	Frequencies Planning in TCP	70
3.28	Frequency Planning Results	70
3.29	Sector Antennas on Structure	72
3.30	BTS in Equipment Room	72
3.31	Feeder Cable	73
3.32	Microwave Antenna	74
3.33	Material Requirements for New Base Station	74
3.34	Actual Equipments Location in SDP	75
3.35	Equipments Installed	75
3.36	List of Equipment Installed	76
3.37	Sample of Antenna Test Result	76
3.38	Drive Test Equipments	77
3.39	GPS is connected to Satellite during Drive Test	78
3.40	Drive Test Result on Signal Level	78
3.41	Drive Test Result on Signal Quality	79
4.1	MapInfo of Area That Having a Problem	81
4.2	Google Earth View	82
4.3	Proposed Structure Locations	85
4.4	RAMO Structure	85
4.5	Coverage Area of Each Cell (a) 80° , (b) 240° and (c) 320°	86
4.6	Line of Sight (LoS) – UiTM Palapes	86
4.7	Coverage Plots of (a) Cell 1, (b) Cell 2 and (c) Cell 3	87

4.8	Coverage Plot (a) Before, (b) After and (c) Stand Alone	88
4.9	Actual Structure	90
4.10	Neighbor Sites	91

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

BTS	-	Base Transceiver Station
ТСР	-	TEMS Cell Planner
TI	-	TEMS Investigation
TRX	-	Transceiver
TCH	-	Traffic Channel
SDCCH	-	Stand Alone Dedicated Control Channel
GoS	-	Grade of Service
SDP	-	Site Design Packages
GSM	-	Global System for Mobile
RF	-	Radio Frequency
ССН	-	Control Channel
BCCH	-	Broadcast Control Channel
MS	-	Mobile Station / Mobile Subscriber
GMSK	-	Gaussian Minimum Shift Keying
SIM	-	Subscriber Identity Module
BSC	-	Base Station Controller
MSC	-	Mobile Switching Network
TC	-	Transcoder
TCSM	-	Transcoder and Submultiplexer
BSS	-	Base Subsystem
NSS	-	Network Switching Subsystem
NMS	-	Network Management Subsystem
LoS	-	Line of Sight

CDD	-	Cell Design Data
QoS	-	Quality of Service
EIRP	-	Effective Isotropic Radiated Power
PLMN	-	Public Land Mobile Network
HPBW	-	Half-power Beamwidth
MAP	-	Mobile Access Planning
MAI	-	Mobile Access Implementation
TXP	-	Transmission Planning
CME	-	Civil, Mechanical and Electrical
SIP	-	Site Identification Package
SIF	-	Site Identification Form
BoQ	-	Bill of Quantity
LoA	-	Letter of Award
MAO	-	Mobile Access Optimization
VSAT	-	Very Small Aperture Terminal
MCMC	-	Malaysia Communications and Multimedia Commission
GPS	-	Global Positioning Systems
ARFCN	-	Absolute Radio Frequency Channel Number
VSWR	-	Voltage Stand Wave Ratio

C Universiti Teknikal Malaysia Melaka

LIST OF APPENDICES

NO TITLE

PAGE

А	Erlang B Table	98
В	Frequency Spectrum for Service Provider	100
С	Frequency Spectrum for Celcom (M) Bhd	101
D	Location Map (Case Study)	102
E	Data Sheet for X-Pole A Panel Dual Band 900/UMTS Antenna	103

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

Chapter 1 will give a brief idea on the project. This chapter consists of project overview, objectives, problem statement, project scope, and methodology and thesis organization.

1.1 Project Overview

The increases in the number of mobile subscribers in certain area caused traffic congestion and poor signal quality. In order to meet the requirements of that particular area, the radio network must offer sufficient coverage and capacity. The radio network planning process begins with the investigation of new network requirements. Then, site survey will be done to the possible site to set up new Base Transceiver Station (BTS). The process proceeds with coverage and capacity planning for that area and the installation of the equipments. The last stage of the process is optimization that will improve the performance of the new radio network. The goal is to achieve as much coverage as possible with optimal capacity and low cost. This project will use TEMS Cell Planner (TCP) for frequency and coverage planning and TEMS Investigation (TI) for drive test.

1.2 Objective

The aims of this project are:

- i. To identify the problems that usually happened in real radio network.
- ii. To provide optimum solution in terms of cost, capacity, coverage and signal quality.

1.3 Problem Statement

In Kuala Lumpur, the number of mobile subscribers increase drastically caused by the increasing number of population. This condition results traffic congestion since the existing network cannot provide enough capacity for users to make a call especially during peak time (working hours). Thus, the need for more installed capacity is rising. To provide more capacity for certain area, the possible solutions are installing more Transceiver (TRX) on the existing BTS or implementing additional radio network or BTS.

For urban area, the problem is how to locate the new BTS since there are many obstacles such as high building that will absorbs or reflects the signal. Besides the frequency planning also become important because there are many existing radio network in urban area. So the frequencies need to be plan wisely to avoid signal interference that will reduce service quality.

1.4 Project Scope

The project will focus on site planning and implementation. Site planning is consists of coverage prediction and frequency planning using TEMS Cell Planner. Coverage planning will predict the path loss and radio wave properties while frequency planning is designing the cell patterns and re-use distance to reduce interference. At the same time there will be a research on capacity dimensioning such as traffic calculation, Traffic Channel (TCH) and Stand Alone Dedicated Control Channel (SDCCH) usage and Grade of Service (GoS). Besides, there will be a study on types and characteristics of suitable antenna for the new network. System optimization will not be cover in this report.

1.5 Methodology

The planning part starts with traffic and coverage analysis, information about the geographical area and the expected need of capacity. Drive test also will be done to determine the actual problem of that area. Using the data from traffic and coverage analysis, a nominal cell plan will produce. Nominal cell plan contains the information such as number of sector, antenna height, location of the new station (latitude and longitude) and antenna direction. The next stage is site survey and the survey will consider the nearby obstacles, space for radio equipment and transmission link. The survey will come out with the actual planned data (antenna height, antenna direction, suitable location). After the site survey, the process will proceed with coverage prediction and frequency planning using planning tools (TEMS Cell Planner).

The implementation part will start with Site Design Packages Survey (SDP). This survey contains the material requirements and the actual position of radio equipment after the new structure (tower or monopole) built. After that, the new antenna system will install and commission using the frequency assigned during planning process. When the site is on-air, system tuning is done. This process will check the system performance and determine whether the site meet customers requirement with good grade of service. If the new system does not meet the objective, some parameter will be change. Drive test will run again to make sure the problem is solved.