

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND PROTOTYPING OF SEMI-AUTOMATED STORAGE AND RETRIEVAL SYSTEM (S-AS/RS) USING MICROCONTROLLER

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotic and Automation) with Honours

by

MOHD.KHAIRULFIKRI BIN SAMSUDIN

FACULTY OF MANUFACTURING ENGINEERING MAY 2009

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Design and Prototyping of Semi-Automated Storage and Retrieval System (S-AS/RS) Using Microcontroller

SESI PENGAJIAN: 2008/09 Semester 2

Saya MOHD.KHAIRULFIKRI BIN SAMSUDIN

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan
atau kepentingan Malaysia yang termaktub di dalam
AKTA RAHSIA RASMI 1972)

TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Alamat Tetap:

75350 Melaka.

Disahkan oleh:

- Alle

Cop Rasmi:

MOHD HISHAM BIN NORDIN
Pensyarah
Fakulti Kejuruteraan Pembuatan
UnMersiti Teknikal Malaysia Melaka

Tarikh: _____20/05/09

10, Jalan Desa Bakti,

Taman Desa Baru,

Tarikh:

25/05/09

** Jik aporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkuasan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declare this report entitled "Design and Prototyping of Semi-Automated Storage and Retrieval System (S-AS/RS) Using Microcontroller" is the results of my own research except as cited in references.

•

: MOHD. KHAIRULFIKRI BIN SAMSUDIN

Author's Name Date

Signature

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation) with Honours. The member of the supervisory committee is as follow:

(Signature of Supervisor)

- 4/1-0

MOHD HISHAM BIN NORDIN Pansyerah Fekulti Kejuruteraan Pembuatan UnMersiti Teknikal Malaysia Melaka

(Official Stamp of Supervisor)

ABSTRACT

Automated storage and retrieval system (AS/RS) is one of the material handling processes in the industrial field. Invented and still in development since 1950s. This system is still popular to become one of the researches choices to improve and increase its effectiveness and efficiency. This project report describes about the design and prototyping of semi-automated storage and retrieval system (S-AS/RS) using microcontroller. Although this system is a semi-automated system, the fully automated system of AS/RS has been chosen as a reference because of its slightly similar conditions. In this project, a semi-automated storage and retrieval system (S-AS/RS) has been designed and prototyped for mini-load storage or the light weight loads. A part of that, this project also involves of designing and fabrication of circuitry and programming, where the PIC 16F877A has been chosen as a brain of the system to control all the mechanisms. Several tests have been grabbed, several improvements have been suggested to compete with the recent technology of the storage system.

i

ABSTRAK

Sistem simpanan dan pemerolehan semula automatik (AS/RS) adalah salah satu proses pengendalian bahan atau pun barangan dalam bidang perindustrian. Sistem ini telah dicipta dan masih dalam proses pembangunan serta penambahbaikan semenjak tahun 1950. Sistem ini juga masih popular dan menjadi salah satu pilihan dikalangan para pengkaji dan pereka untuk diperbaiki dan dipertingkatkan lagi kecekapan dan keberkesanannya. Laporan projek sarjana muda ini adalah berkenaan tentang mereka dan membina prototaip sistem simpanan dan pemerolehan semula semi-automatik (S-AS/RS) menggunakan pengawalmikro. Walaupun sistem ini adalah sistem semiautomatik, namun, sistem kawalan automatik sepenuhnya iaitu sistem simpanan dan pemerolehan semula automatik (AS/RS) telah dipilih sebagai sumber rujukan, disebabkan oleh persamaan keadaan dan operasinya iaitu menyimpan dan memperoleh semula simpanan. Dalam projek ini, sistem simpanan dan pemerolehan semula semi-automatik (S-AS/RS) akan direka dan diprototaipkan untuk jenis simpanan bebanan mini ataupun simpanan bebanan ringan. Selain itu, projek ini juga merangkumi rekaan dan pembinaan litar-litar berkaitan, dan juga pengaturcaraan sistem yang mana pengawalmikro PIC16F877A telah dipilih sebagai pengawal utama sistem prototaip bagi mengawal keseluruhan mekanisma. Beberapa ujian telah direka dan dijalankan ke atas prototaip bagi menguji keupayaan dan kemampuannya. Walaupun projek ini telah mencapai sasaran seperti yang diharapkan, namun bagi menyaingi teknologi terkini dalam sistem simpanan barangan, beberapa cadangan telah dikemukakan.

DEDICATION

To my beloved family especially my parents

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

This project report would never have been completed without God's blessing and help from many people. First of all, thanks to God for His blessings I've managed to finish up this report. To my family that continually give their supports and inspiration in my student life, my friends that share their ideas and help, my special thanks for their support. Then I would like to express my gratitude to my supervisor, En. Mohd Hisham Bin Nordin for his continuous help, encouragement, and guidance. Not to forget, other lecturers especially robotic and automation lecturers that had shared their ideas and knowledge, and also to my brother-in-law, Sani Irwan Bin Md. Salim. I truly appreciate their technical support throughout the accomplishment of this project. I'm very grateful to know all the people who have worked between and behind the scenes to make this report; my ex-colleagues at PPK Technology Sdn. Bhd., and all who had directly or indirectly helped during this project completion. Finally, I hope this report will fulfill all the requirements need for the Degree Bachelor of Engineering Manufacturing (Robotic & Automation). Thank you all.

TABLE OF CONTENTS

Abstr	act	i
Abstr	ak	ii
Dedic	cation	iii
Ackn	owledgement	iv
Table	of content	v
List C	Of Table	ix
List C	Of Figure	Х
List C	Of Abbreviation	xiii
1. IN	NTRODUCTION	1
1.1.	Background	1
1.2.	Problem Statement	3
1.3.	Objectives of the Project	4
1.4.	Scopes	4
1.5.	Benefits of the Project	4
2. L	ITERATURE REVIEW	6
2.1	Storage Systems	6
2.2	Types of Storage Systems	7
2.2.1	Conventional (Non-Automated) Storage Methods and Equipment	8
2.2.1.	1 Bulk Storage	8
2.2.1.	2 Rack Systems	8
2.2.1.	3 Shelving and Bins	11
2.2.1.	4 Drawer Storage	11
2.2.2	Automated Storage System	12
2.2.2.	1 Carousel	13
2.2.2.	2 Automated Storage and Retrieval System (AS/RS)	15
2.3	AS/RS Applications	23
2.4	Components and Operating Features of an AS/RS	23
2.4.1	Storage Structure	24

2.4.2	Storage and Retrieval (S/R) Machine	25
2.4.3	Storage Modules	26
2.4.4	Pickup-and-Deposit (P&D) Station	27
2.4.5	Control System	27
2.5	Operation of an AS/RS	28
2.6	Storage System Performance and Location Strategies	29
2.6.1	Storage System Performance	29
2.6.1.1	Storage Capacity	30
2.6.1.2	2 Storage Density	30
2.6.1.3	B Accessibility	30
2.6.1.4	4 Throughput	30
2.6.1.5	5 Utilization	31
2.6.1.6	5 Reliability	31
2.6.2	Storage Location Strategies	31
2.6.2.1	Randomized Storage	32
2.6.2.2	2 Dedicated Storage	32
2.7	Engineering Analysis of AS/RS	33
2.7.1	Sizing the AS/RS Rack Structure	33
2.7.2	AS/RS Throughput	34
2.8	Research on AS/RS	37
2.8.1	AS/RS Related Journal	37
2.8.2	AS/RS Patents	41
2.9	Components Planning in S-AS/RS	43
2.9.1	Mechanical Structure	43
2.9.1.1	Frame Construction	43
2.9.1.2	2 Gripper	47
2.9.2	Drive Train	49
2.9.2.1	Electrical Motors	49
2.9.2.2	2 Motor Controlling Method	52
2.9.3	System Controller	53
2.9.3.1	Programmable Logic Controller (PLC)	54
2.9.3.2	2 Microcontroller Unit (MCU)	55
2.9.4	Power Supply	57

3 METHODOLOGY	60
3.1 Introduction	60
3.2 Project Planning	60
3.2.1 Project Gantt Chart	61
3.2.1.1 Title Selection	63
3.2.1.2 Preliminary Research Work	63
3.2.1.3 Problem Review	63
3.2.1.4 Problem Analysis	63
3.2.1.5 Data Collection	63
3.2.1.6 Data Analysis	64
3.2.1.7 Final Analysis	64
3.2.1.8 Designing, Fabricating, Analysis, and Improvement the Prototype	64
3.2.2 Project Flow Chart	65
3.2.2.1 Initial Condition	65
3.2.2.2 Data Collection	65
3.2.2.3 Literature Review	67
3.2.2.4 Analysis and Components Consideration	67
3.2.2.5 Methodology	68
3.2.2.6 Design and Prototyping Consideration	68
3.2.2.7 Project Design and Prototyping	68
3.2.2.8 Testing and Analyzing	69
3.2.2.9 Report Summation and Final Presentation	69
3.3 Project Tools	70
3.3.1 Research and Study Tools	70
3.3.1.1 Journals, Conference Papers, Patents, Books, and Theses	70
3.3.1.2 Articles, Manuals, and Magazines	71
3.3.1.3 Internet	71
3.3.1.4 Flow Chart	71
3.3.2 Computer-Aided Design (CAD)	72
4 DESIGN AND PROTOTYPING OF SEMI-AUTOMATED	74
STORAGE AND RETRIEVAL SYSTEM (S-AS/RS)	
6.1 Introduction	74

6.2	Bill of Materials			
6.3	Mechanical Design and Prototyping of S-AS/RS			
6.4	Electrical Design of S-AS/RS	81		
6.4.1	Control board	81		
6.4.2	PIC16F877A Microcontroller	82		
6.4.3	Motor drivers	85		
6.4.4	Keypad	87		
6.4.5	Limit switch	89		
6.5	S-AS/RS System Operation	92		
6.6	Program Development	94		
5. TE	STING, RESULT, AND DISCUSSION	97		
5.1	Introduction	97		
5.2	Test 1: Position Accuracy without Limit Switches	97		
5.3	Test 2: Position Accuracy without Limit Switches	99		
5.4	Discussion	100		
6. CO	NCLUSION AND RECOMMENDATIONS	101		
6.1	Conclusion	101		
6.2	Recommendations	101		
6.2.1	Mechanical Structure	102		
6.2.2	Electrical components	103		
6.2.3	System Programming	104		
REFF	CRENCES	105		
APPE	ENDICES			
А	PIC 16F877A Description and Features	111		
В	PIC 16F877A Description and Features (continue)	112		
С	DC Motor Interface Circuit Components Description (Driver)	113		
D	S-AS/RS Source Code	114		

LIST OF TABLES

2.1	Types of materials typically stored in a factory	7
2.2	Examples of AS/RS applications	23
2.3	DC motor advantages and disadvantages	52
2.4	Advantages and Disadvantages between PLC and PIC	56
3.1	Project Schedule; Gantt chart for PSM I	61
3.2	Project Schedule; Gantt chart for PSM II	62
4.1	S-AS/RS design and prototyping materials and components	75
4.2	Pins assignment for specific function	85

LIST OF FIGURES

2.1	Pallet rack	9
2.2	Cantilever rack	9
2.3	Drive-through racks	10
2.4	Shelving and bins	11
2.5	Drawer storage	12
2.6	Horizontal carousel system	14
2.7	Vertical carousel system	15
2.8	AS/RS environment	17
2.9	AS/RS unit-load storage	18
2.10	AS/RS unit load deep-lane	18
2.11	AS/RS mini-load storage	20
2.12	A worker operates the P&D station	20
2.13	Man-on-board AS/RS	21
2.14	Automated item retrieval system	21
2.15	An example of vertical lift automated storage and retrieval	22
	system	
2.16	Basic components of AS/RS	24
2.17	AS/RS S/R machine	26
2.18	AS/RS carriage and shuttle	26
2.19	Example of plastic tote	27
2.20	Basic an AS/RS	39
2.21	Y-Z axis movements for AS/RS	42
2.22	X-axis AS/RS movement	42
2.23	3 mm Acrylic	44
2.24	Plywood	45
2.25	Aluminum profile	45
2.26	Mild steel plate	46
2.27	External grip	47
2.28	Internal grip	47
2.29	Parallel gripper	47

2.30	Angular gripper	48
2.31	Gripping actions	49
2.32	Servo motor	50
2.33	Stepper motor	51
2.34	Brushless motor	51
2.35	An H-bridge structure	53
2.36	Two basic state of an H-bridge	53
2.37	Typical PLCs used	54
2.38	Peripheral interface controller (PIC)	55
2.39	Transformer	57
2.40	Basic block diagram of a fixed regulated power supply	58
2.41	Half wave rectification	58
2.42	Small ripple remain after filter process using capacitor	58
2.43	Fixed linear power supply circuit design for prototype	58
3.1	Project flow chart	66
3.2	Solidworks 2007; Mechanical design	72
3.3	Proteus 6 Professional; Electrical design	72
3.4	CCS C Compiler; C development platform	73
3.5	PICkit 2; programmer ICSP interface	73
3.6	ICSP hardware with controller board	73
4.1	Storage structure	77
4.2	X-axis track	77
4.3	X-axis slider	78
4.4	Y-axis track (mast of S/R machine)	78
4.5	Carriage with Gripper	79
4.6	Complete set of mechanical structure for S-AS/RS prototype	
	design with Solidworks (without storage compartment)	79
4.7	Container	80
4.8	Final result of mechanical structure design	80
4.9	Control board (SK40B)	82
4.10	PIC 16F877A pin diagram	83

4.11	Block diagram of PIC 16F877A	84
4.12	MD10A motor driver	86
4.13	L293D driver schematic diagram	87
4.14	L293D motor driver	87
4.15	Keypad	88
4.16	Keypad wiring diagram to PIC	88
4.17	Keypad configuration	88
4.18	Limit switch at Y-axis (initial)	89
4.19	Limit switch at Y-axis final)	90
4.20	Limit switches points	90
4.21	Final circuit of S-AS/RS prototype	91
4.22	S-AS/RS prototype operation flow chart	93
4.23	S-AS/RS system block diagram	94
4.24	Flow chart symbol	95
4.25	System Programming Flow chart	96
5.1	S/R machine move upward over the limit: difficult to pull the	
	container inside the carriage	98
5.2	S/R machine moves upward over the container limit location.	98
5.3	X and Y axes of the S/R machine move beyond the limit.	98
5.4	The S/R machine location position is better than before	99
5.5	X and Y axes tolerance of location position is less compare	
	to before	99
5.6	S/R machine move in the limit: easily to pull the container	
	inside the carriage	100
6.1	Profile rail guide	102
6.2	Example of linear motor	103
6.3	Double acting cylinders	103

xii

LIST OF ABBREVIATIONS

AC	_	Alternating Current
AS/RS	_	Automated Storage and Retrieval System
BLDC Motor	_	Brushless Direct Current Motor
CAD	_	Computer-Aided Design
DC	_	Direct Current
DCC	_	Dual Command Cycle
FCFS	_	First-Come-First-Served
FIFO	-	First-In-First-Out
IC	-	Integrated Circuit
LCD	-	Liquid Crystal Display
LED	-	Light Emitting Diode
MCU	_	Microcontroller Unit
P&D Station	-	Pickup-and-Deposit Station
PC	-	Personal Computer
PCB Board	-	Printed Circuit Board
PIC	-	Peripheral Interface Controller
PLC	_	Programmable Logic Controller
PSM I /PSM II	_	Projek Sarjana Muda I / II
PSU	-	Power Supply Unit
PWM	_	Pulse Width Modulation
S/R Machine	_	Storage and Retrieval Machine
S-AS/RS	-	Semi-Automated Storage and Retrieval System
SCADA	-	Supervisory Control and Data Acquisition
SCC	-	Single Command Cycle
SKU	_	Stock-Keeping-Unit
UTeM	_	Universiti Teknikal Malaysia Melaka
WIP	_	Work-In-Progress

CHAPTER 1 INTRODUCTION

1.1 Background

Material handling is one of the crucial activities that involves in the manufacturing process. Material handling is defined as moving the right material to the right place, at the right time, at the right amount, and in the right position or condition to minimize production costs. Improvements in material handling have affected working people more than any other area of work design and ergonomics. Today, we can say that the physical drudgery has been reduced and continuously research tries to eliminate from work by material handling equipment (Meyers & Stephens, 2000). The material handling equipment can be classified into four categories; material transport equipment, storage systems, unitizing equipment, and identification and tracking systems. However, for this report, it tends to focus on the storage system only.

Storage system is used to store the materials for a period of time and to permit access to those materials when required. One of the storage systems that are increasingly being used is the Automated Storage and Retrieval System (AS/RS). The Automated Storage and Retrieval System (AS/RS) is one of the most important tools used in warehouse material handling and inventory control for the purpose of order picking and similar applications, as well as in modern factories for work-in-process (WIP) storage. A typical AS/RS is composed of multiple parallel aisles of racks with storage slots (cells), a storage and retrieval (S/R) machine for each aisle and an input and output (I/O) station. The S/R machine moves simultaneously in horizontal and vertical directions in order to reduce the travel time (Groover, 2008).

In designing and prototyping the Semi-Automated Storage and Retrieval System (S-AS/RS) which looks similar as the real AS/RS, many physical design and control issues have to be addressed in the right way to take advantage of all its process as in fully automated (AS/RS). Automated means, it's entirely automatic-working by itself with little or no direct human to control the system. The AS/RS is fully software aided computerized controlled, added with help of several sensors to improve its capability. According to the project title, this prototyping project intends to present issues concerning Semi-Automated Storage and Retrieval System (S-AS/RS) design and control by using microcontroller.

As the name applied, semi-automatic means partially automatic which having a mechanism for self-working but not for continuous operation. It needs a little help of man power to control or set it to follow the requirements. Although it is semi-automatic project, this prototype will have the same basic application and functional as the typical AS/RS; storage and retrieve the stock-keeping-unit (SKU) or load to and from the storage. When mentioning about the size, this prototype will exhibit in the small scale compare to the real industrial AS/RS. Although the system is in a small scale, this prototype can be used to handle a light and small load operation such as handling the small tote (container) in one operation, either to store or retrieve the item.

For this semi-automated storage and retrieval system (S-AS/RS), it is controlled by using the keypad which is used to choose the task either to store or to retrieve the load and to verify the location of the operation. Basically, this system being designed in order to bring the material to the operator; cutting the cycle time of waiting, walking, and improving the ergonomic system in the storage system by reducing or eliminating the awkward working posture and repetition of works that will contribute to the work injury. A part of that, this S-AS/RS project is conducted to handle small load (less than 500 grams) which is one of the initiative or maybe as an invention to create a further simple control system for efficiency of storage system.

1.2 Problem Statement

Storage system is one of the crucial parts for material handling in manufacturing activities. For the parts that are small, light, and less in volume, it might be easy to handle and stored. But, when the parts increase its volumes, it can become as a problem to store and to retrieve it back. By performing the conventional (manual) in material handling for storage system, it can contribute several problems that need to be reduced or eliminated, such as cannot utilize the maximum space in the warehouse or store because of limited equipment, not fully utilizing the higher space of the store, cannot use the storage system efficiently, difficult to increase the storage volume, the chance of injury to workers might happen when handling the parts or materials, and increase the ergonomic risk factor such as force, repetition, and awkward posture.

In the recent day, the most efficient method to solve the storage problem is the automated storage and retrieval system (AS/RS). This system basically focuses more to the handle large and big load. In addition, it needs higher capital and cost to implement in the storage system which is become as an issue to the small company to use this system. For the small or maybe the new company they also need 'something' to improve their storage system and want to boosts up their productivity. So the Semi-Automated Storage and Retrieval System (S-AS/RS) is the answer to be considered. In addition, it also can apply the 5S concept; Sort, Set in Order, Shine, Standardize, and Sustain which is the goal in manufacturing and industrial field that will result in improved profitability, efficiency, service and safety.

1.3 Objectives of the Project

There are several objectives that need to be considered to achieve the goals of this project which is to Design and Prototyping of Semi-Automated Storage and Retrieval System (S-AS/RS) using microcontroller which are:

- a) To develop the prototype of Mini-Load Semi-Automated Storage and Retrieval System (S-AS/RS).
- b) To control the Mini-Load Semi-Automated Storage and Retrieval System (S-AS/RS) using PIC microcontroller.

1.4 Scopes

In order to design and prototyping the Semi-Automated Storage and Retrieval System (S-AS/RS) using microcontroller, scopes are required to assist and guide the development of the project. The scopes should be identified and planned to achieve the objective of the project successfully. The scopes for this project are:

- a) Design and develop mechanical structure of Mini-Load S-AS/RS prototype model.
- b) Control the Mini-Load S-AS/RS prototype system using PIC microcontroller.
- c) The CCS C compiler is used to develop the S-AS/RS program in C language.

1.5 Benefits of the Project

The Semi-Automated Storage and Retrieval System (S-AS/RS) are being designed and prototyped using microcontroller in order to become as one of the impetus or as a starting point to create a beneficial technology of storage system operation that is affordable. Besides that, the prototype of S-AS/RS hopefully can be used as a platform to grab the long list of AS/RS benefits when it's implemented at the real scale of the store or warehouse. Below are several benefits that can be listed for the S-AS/RS system:

- a) Affordable semi-automated storage systems (less cost).
- b) Needs a little help of man power to control or set it to follow the requirements.
- c) Reduce active participation of workers in storage system, thus increase workers safety; reduce the ergonomic risk factor such as force, repetition, and awkward posture.
- d) Reduce energy consumption.
- e) Improve storage system, thus can boosts up the productivity.
- f) Reduce time consumption to store and retrieve items in the store; cutting the cycle time of waiting and walking thus reducing the production lead time.
- g) Apply the 5S concept which is one of the industrial goals.
- h) High floor-space utilization thus used the storage system efficiently.

CHAPTER 2 LITERATURE REVIEW

2.1 Storage Systems

Storage system is one of the important activities in material handling system. It is because, there is no that raw material, work-in-process (WIP) parts, and the finished products are likely to spend sometime in a warehouse or at distribution center before being shifted to other activity. There are several types of material that are usually stored using the storage system as indicated in **Table 2.1**. (Groover, 2008, p.330). Categories number 1 to 5 relate directly to the product, number 6 to 8 relate to the process, and number 9 to 10 relate to overall support of factory operations. The material storage system is used to store materials for a period of time and to permit access to those materials when required. As the safety factor as the prime concern for the storage system, the time dimension also as one of the important thing because of to determines how quickly the material can move through the facility. The amount of the work-in-process (WIP), excessive inventories, repeated handling of the material, and order delivery lead times are affected by the aspect of the material handling system (Groover, 2008).

N	T	
No	Туре	Description
1	Raw materials	Raw stock to be processed (example: bar stock, sheet metal, plastic molding compound)
2	Purchased parts	Parts from vendors to be processed or assembled (example: castings, purchased components)
3	Work-in-process	Partially completed parts between processing operations or parts awaiting assembly
4	Finished product	Completed product ready for shipment
5	Rework and scrap	Parts that do not meet specifications, either to be reworked or scrapped
6	Refuse	Chips, swarf, oils, other waste products left over after processing; these materials must be disposed of, sometimes using special precautions
7	Tooling	Cutting tools, jigs, fixtures, molds, dies, welding wire, and other tooling used in manufacturing and assembly; supplies such as helmets, gloves, and others
8	Spare parts	Parts needed for maintenance and repair of factory equipment
9	Office supplies	Paper, paper forms, writing instruments, and other items in support of plant office
10	Plant records	Record on product, equipment, and personnel

Table 2.1: Types of materials typically stored in a factory (Groover 2008).

2.2 Types of Storage Systems

As mentioned before, storage systems can described as one of important system that needs in the industrial field. They play an important role in industrial which will effect the productivity of the production. Basically, this system can be classified into two major categories: (1) conventional (non-automated) storage method and (2) automated storage system. Below are little bit explanations about both systems.