DESIGN OPTIMIZATION OF THIRD BRAKE LIGHT AND SIGNAL SYSTEM ON MOTORCYCLE HELMET

LOGESWARAN A/L KANASIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

"It is hereby certified that I have read this thesis by Logeswaran A/L Kanasin and in our opinion it is satisfactory in terms of scope, quality and presentation as a fulfillment of the requirements for the course Bachelors Degree in Mechanical Engineering (Automotive)"

Signature	:
Supervisor 1	: Mr. Mohd Zakaria Mohammad Nasir
Date	;
Signature	:
Supervisor 1	: Mr. Razali bin Mohd Tihth
Date	<u>:</u>

DESIGN OPTIMIZATION OF THIRD BRAKE LIGHT AND SIGNAL SYSTEM ON MOTORCYCLE HELMET

LOGESWARAN A/L KANASIN

This report was submitted in accordance with the partial requirements for honor of Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

MAY 2010

DECRALATION

I hereby, declare this thesis entitled "DESIGN OPTIMIZATION OF THIRD BRAKE LIGHT AND SIGNAL SYSTEMON MOTORCYCLE HELMET"

is the result of my own research except as cited in the reference.

Signature	:	
Author's Name	:	LOGESWARAN A/L KANASIN
Date	:	

DEDICATION

To my beloved family.

ACKNOWLEDGEMENTS

In name of GOD I would like to express my first and foremost thankfulness for giving me the optimum health, courage and strength along the period of completing this project.

It gives me the greatest pleasure to express my sincere gratitude to my supervisor, Mr. Mohd. Zakaria Mohammad Nasir of which we had an excellent working relationship, and who offered tremendous help and encouragement throughout the course of my graduate studies and completion of this project.

My sincere thank also to my friends, all technicians and staffs in Faculty of Mechanical, UTeM; thank you for the co-operations, helps, and patience.

Thanks also to Universiti Teknikal Malaysia Melaka for giving me the opportunity to complete my degree program successfully.

I would also like to take this opportunity to thank my family members who inspired and supported me throughout the completion of my project.

ABSTRACT

A new helmet design where it is integrated with wireless based third brake light and turn signal lights is being developed in this thesis. This invention will function to be more flexible, and increase the safety of motorcyclists. The presence of third brake light and turn signal light at the back of helmet will increase the visibility of the rider and his motorcycle especially at night and raining. The design is based on existing third brake light system using wireless system. Extra feature that is added to this invention is the addition of turn signal lights at the back of helmet. The new design will be integrated into an air spoiler unit to make it as an accessory. The systems will be functioning by signal transmission between transmitter and receiver using radio frequency (RF). The transmitter unit will be attached to motorcycle and receiver will be placed at the helmet.

ABSTRAK

Satu reka bentuk topi keledar yang terkini disepadukan dengan sistem tanpa wayar yang menghubungkan lampu brek ketiga dan satu suis membelok adalah dibangunkan dalam tesis ini. Ciptaan ini akan berfungsi supaya lebih fleksibel, dan meningkatkan keselamatan penunggang motosikal. Kehadiran lampu brek ketiga dan lampu isyarat membelok di belakang topi keledar akan meningkatkan jarak penglihatan penunggang dan pengguna jalanraya yang lain di belakang motosikal terutama pada waktu malam dan semasa hujan. Reka bentuk adalah berdasarkan terdapat brek ketiga sistem lampu menggunakan sistem tanpa wayar. Ciri-ciri tambahan yang ditambah untuk ciptaan ini adalah lampu isyarat membelok kiri dan kanan di belakang topi keledar. Reka bentuk ini adalah berdasarkan kepada lampu brek ketiga menggunakan sistem tanpa wayar yang sedia ada. Reka bentuk baru ini akan diintegerasikan ke dalam bekas aerodinamik udara bagi menjadikan ia seperti satu aksesori topi keledar. Sistem-sistem itu akan berfungsi oleh transmisi isyarat antara pemancar dan penerima menggunakan frekuensi radio. Unit pemancar akan menjadi diletakkan pada motosikal dan penerima akan dipasang pada topi keledar.

TABLE OF CONTENT

CHAPTER	SUBJECT	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF DIAGRAMS	xiiii
	LIST OF ABBREVIATIONS	XV

CHAPTER 1	INTRODUCTION	1
1.1	Problem Statement	3
1.2	Objective	6
1.3	Scope	6

CHAPTER 2		LITERATURE REVIEW	7
2.1	Wirele	ess system	7
	2.1.1	Bluetooth	7
	2.1.2	Infrared system	9
	2.1.3	Radio Frequency	11
2.2	RF Tra	ansmitter	13
	2.2.1	Transmitter circuit	15
2.3	RF Re	ceiver	16
2.4	Motor	cycle Helmet Design	17
	2.4.1	Choices of Motorcycle Helmet	18
	2.4.2	Retention System	21
	2.4.3	Comfort Padding	21
	2.4.4	Outer Shell	21
	2.4.5	Impact Absorbing Liner	22
2.5	Motor	cycle Electrical Wiring System	23
	2.5.1	Turn Signal Light	24
	2.5.2	Brake Light	24
2.6	Electri	ical Components	25
	2.6.1	Resistor	25
		2.6.1.1 Fixed resistors vs. Variable resistors	26
		2.6.1.2 Resistive Unit	27
	2.6.2	Capacitor	28
		2.6.2.1 Types of Capacitors	28
		2.6.2.2 Capacitance	29
	2.6.3	LED (Light Emitting Diode)	29
	2.6.4	Transistor	30
		2.6.4.1 Type of Transistors	31
	2.6.5	Integrated Circuit (IC)	32
	2.6.6	Relay	33
		2.6.6.1 Operation of Relay	33

		2.6.6.2 Single Pole Single Way relay (SPSW) &	34
		Single Pole Two Way relay (SPTW)	
2.7	Ergon	omics of helmet design	35
	2.7.1	Design Considerations	36
	2.7.2	Design Criteria	37
	2.7.3	Standard for Helmet Strength	38
	2.7.4	Helmet Weight and Aerodynamics	39
	2.7.5	Design Issues	39

CHAPTER 3	METHODOLOGY	41
3.1	Flow Chart of Thesis	41
3.2	Wireless System Selection	43
3.3	Helmet Design Compatibility (Accessory) with	44
	RF System	
3.4	Block Diagram of RF System	47
3.5	Circuit Design	48
3.6	Helmet modelling in MSC CATIA V5	49

CHAPTER 4		RESULTS AND DISCUSSION	50
4.1	Transr	nitter Unit	50
4.2	Receiv	ver Unit	53
4.3	System	n Unit Attachment on Motorcycle Model	55
	4.3.1	System attachment on helmet	57
	4.3.2	Testing on motorcycle	60
4.4	Range	setup and testing	61
4.5	Radio	Frequency (RF) Radiation Effect on Human	62
	4.5.1	Non-Ionizing Radiation	62
	4.5.2	Measurement of Radio Frequency Radiation	63
	4.5.3	Biological Effect Caused By Radio Frequency	63
		Energy	
	4.5.4	Emissions from Radio and Television Broadcast	64
		Antennas	

CHAPTER 5	CONCLUSION AND RECOMMENDATION	66
5.1	Conclusion	66
5.2	Recommendation	67

REFFERENCES	68
BIBLIOGRAPHY	69
APPENDIX	70

LIST OF TABLES

NO.	TITLE	PAGE
1.1	Breakdown of registered vehicles from 1999 to 2007	2
1.2	Road Accident Fatalities according to type of road users	2
2.1	Comparison of Performance Characteristics of wireless	11
	systems	
2.2	Breakdown of RF system	12
2.3	Type of resistors comparison	26
2.4	Helmet test criteria for CSPC, ASTM F1447 and Snell B-95	38
3.1	Wireless system comparison	43

LIST OF FIGURES

NO.	TITLE	PAGE
1.1	Downward visual clearance	4
1.2	Downward visual clearance (side view)	4
1.3	Upward visual clearance	5
1.4	Upward visual clearance (side view)	5
2.1	Bluetooth radio frequency bandwidth	8
2.2	Electromagnetic spectrum	10
2.3	No deflection	13
2.4	Deflection	13
2.5	Compass deflection and effect on voltmeter	14
2.6	Sine wave and square wave forms	14
2.7	Wave characteristics	15
2.8	Receiver circuit flow	17
2.9	Cross section of a full-face motorcycle helmet	18
2.10	Full face helmet	19
2.11	Open face helmet	19
2.12	Half-helmet	20
2.13	Contact switch	25
2.14	Fixed resistor	26
2.15	Resistor color code system	27
2.16	Capacitor	28
2.17	LED configuration	29
2.18	Transistors	30
2.19	NPN and PNP transistor configurations	31
2.20	IC (Integrated Circuit)	32

2.21	Simple electromechanical relay	33
2.22	Relay condition	34
2.23	Structure and components of a helmet	35
2.24	Helmet's comfort padding comparison	40
3.1	KHI Helmet	44
3.2	Position of transmitter	46
3.3	Relay (12 V)	46
3.4	Sample transmitter circuit drawn in MultiSim	48
3.5	Surface modelling of helmet	49
4.1	Assembled transmitter unit	51
4.2	Front brake transmitter switch location	52
4.3	Rear pedal brake transmitter switch location	52
4.4	Assembled receiver circuit	54
4.5	Flasher circuit schematic	54
4.6	Motorcycle model	56
4.7	Brake switch at (a) front and (b) rear	56
4.8	Signal light switch box	57
4.9	Power supply location	58
4.10	Connecting wires	58
4.11	Location of LEDs	59
4.12	Fabricated helmet with motocycle model	60
4.13	Instantaneous light up of brake on each system	60
4.14	Distance between the transmitter and receiver units	61

LIST OF DIAGRAMS

NO.TITLEPAGE2.1FM Transmitter circuit diagram152.2Basic motorcycle wiring harness233.1Transmitter unit47

3.2	Receiver unit	47
4.1	Transmitter circuit schematic diagram	51
4.2	Receiver circuit schematic diagram	53

xiiii

LIST OF ABBREVIATIONS

JPJ	=	Jabatan Pengangkutan Jalan
JKJR	=	Jabatan Keselamatan Jalan Raya
IR	=	Infrared
RF	=	Rado Frequency
Hz	=	Hertz
ISM	=	Industrial, Scientific and Medical
CPU	=	Central Processing Unit
FM	=	Frequency Modulator
AM	=	Amplitude Modulator
VHF	=	Very High Frequency
UHF	=	Ultra High Frequency
PPE	=	Personal Protective Equipment
ISO	=	International Standards Organization
EPS	=	Expanded Polystyrene
IC	=	Integrated Circuit
LED	=	Light Emitting Diode
SPSW	=	Single Pole Single Way
SPTW	=	Single Pole Two Way
MTBI	=	Mild Traumatic Brain Injury
CPSC	=	Consumer Product Safety Commission
SAR	=	Specific Absorption Rate
ERP	=	Effective Radiated Power

CHAPTER 1

INTRODUCTION

In Malaysia, the major mode of transportation is motorcycle since 1980's. Currently, the motorcycles on the road constitutes more than halves of all registered vehicles population in Malaysia. According to Jabatan Pengangkutan Jalan (JPJ), about 485,236 new motorcycles have been registered in the year 2007 alone. The percentage of motorcycles registered annually in Malaysia is about 60% with an annual growth rate of 7% (Highway Planning Unit, Ministry of Works, 2003).So, the presence of higher number of motorcycles on the road constitutes to higher number of cases involving road accidents compared to other vehicles. The use of motorcycles and motor vehicles imposes risks of death or permanent impairment due to head injury. So, for motorcycles, the proper use of protective helmets can minimize the risk of death or permanent impairment.

Table 1.1: Breakdown of registered vehicles from 1999 to 2007

Year	No. Of Registered Vehicles				
	Car	Motorcycle	Lorry/Van	Bus	Taxi
1999	3,787,047	5,082,473	642,976	47,674	55,929
2000	4,145,982	5,356,604	665,284	48,662	56,152
2001	4,557,992	5,609,351	689,668	49,771	56,579
2002	5,027,173	5,859,195	714,796	51,251	58,385
2003	5,428,774	6,164,953	740,462	52,846	60,723
2004	5,911,752	6,572,366	772,218	54,997	65,008
2005	6,473,261	7,008,051	805,157	57,370	67,451
2006	6,941,996	7,458,128	836,579	59,991	70,409
2007	7,419,643	7,943,364	871,234	62,308	72,374

(Source: JKJR, January 2009)

Table 1.2: Road Accident Fatalities according to type of road users

Road User Categories	2007	2008
Car driver/passengers	1228	1335
Motorcyclists/pillion riders	3646	3898
Pedestrians	636	598
Cyclists/pillion	190	203
Bus driver/passenger	75	48
Lorry drivers	204	195
Van drivers	133	96
Four-wheel Vehicle drivers	99	106
Others	71	48
Total	6282	6527

(Source: JKJR, August 2009)

The seriousness of injuries sustained in road accidents among the users are more prevalent in motorcyclists and pillion passengers category. Although many precaution steps have been implemented in recent years, the fatalities keep on increasing every year. Normally, in motorcycle accidents, our upper parts of human body especially head and neck are more prone to serious injuries. According to a research done by Road Safety Research Centre, Universiti Putra Malaysia (UPM) in 1999, the distribution of injuries in fatally injured motorcyclists shows that their head is the most frequent part of human getting injured at 44.1%.

This alarming rate of road fatality among motorcyclists is contributed largely by its safety aspects such as safety helmet and hazard lights. Some of these elements does not comply the standards set by Jabatan Keselamatan Jalan Raya (JKJR) and Standard and Industrial Research Institute of Malaysia (SIRIM) and also international standard like Federal Motor Carrier Safety Administration (FMCSA).

Other than that, innovative ideas like new design on helmet which consists of brake light and signal lights at the back of helmet will help in improving road fatalities involving motorcycles. The presence of these lights at the back of helmet will alert other road users behind them. This will be helpful during heavy rain and at night.

1.1 Problem Statement

The appearance of motorcycles and its riders during night and under rain is greatly reduced due to poor visibility. The motorists behind a motorcycle can't see them under these weather conditions. Furthermore, although the usage of safety vests can be helpful, not many motorcyclists are using it.

In the meantime, the position of motorcycle's rear brake light which is low for other motorists including motorcyclists. In terms of peripheral vision of a helmet, the downward visual clearance is 30° where the second plane is tilted 30° down from the basic plane. This criteria is suitable for helmets without integrated brake and signal light on helmet.

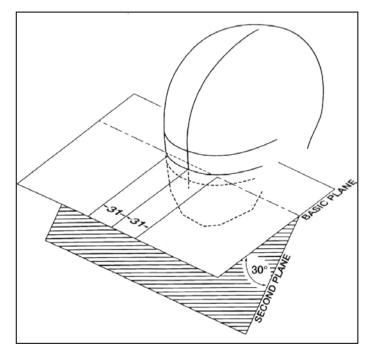


Figure 1.1: Downward visual clearance

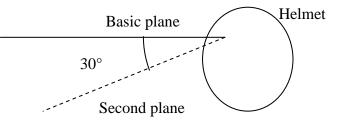


Figure 1.2: Downward visual clearance (side view)

But for visual clearance above the basic plane (upward visual clearance), the second plane is tilted 7° up from the reference plane. This implies that the motorcyclists can view upward up to 7° from their eye (reference plane). For better safety precaution, the riders need more and better visible brake and signal light. Attaching brake and signal light on motorcycle helmet based on upward visual clearance could be the solution for this.

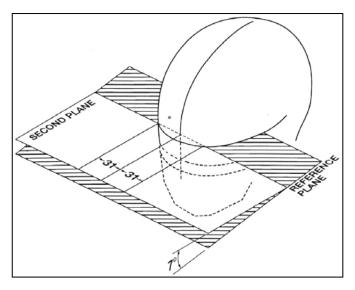


Figure 1.3: Upward visual clearance (Source: 2005 Standard for Protective Headgear, Snell Memorial Foundation)

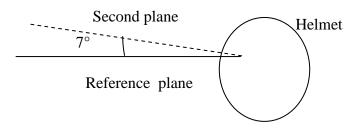


Figure 1.4: Upward visual clearance (side view)

1.2 Objective

 Develop new third brake light and turn signal on motorcycle helmet using wireless system.

1.3 Scope

- i) Literature study on wireless systems and its effects to environment
- ii) Literature study on motorcycle's existing helmet design
- iii) Perform analytical study on critical components
- iv) Design and develop a new electrical circuit for wireless brake and signal system.
- v) Design and modelling new concept and design in MSC CATIA V5 of new helmet design
- vi) Fabricate prototype model and testing

CHAPTER 2

LITERATURE REVIEW

2.1 Wireless System

In this thesis, wireless system will be used for the new third brake light and signal system on the helmet. Basically, examples of wireless systems are Bluetooth, Infrared (IR), and Radio Frequency (RF). Mobility is one of the key terms in wireless system where users of wireless system tend to be mobile. To choose the best wireless system for this project, comparisons will be made in terms of advantages and disadvantages among the three available wireless systems.

2.1.1 Bluetooth

Bluetooth is one method of connecting devices like computers with hand phones and to other electronic gadgets. Bluetooth is an open wireless protocol that enables short-range wireless voice and data communications anywhere in the world.