WIRELESS WATER METER SYSTEM

RAJA MARIATUL QIBTIAH BT RAJA JAAPAR

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II
Tajuk Projek : WIRELESS WATER METER SYSTEM
Sesi : 2008/2011 Pengajian
Saya RAJA MARIATUL QIBTIAH BT RAJA JAAPAR
mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat- syarat kegunaan seperti berikut:
1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian tinggi.
4. Sila tandakan ($$) :
(Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD* (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD
Disahkan oleh:
(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)
Alamat : LOT 4694, LORONG 3, KG TERSUSUN BT 6 31150 TAMBUN IPOH PERAK.
Tarikh: 20 April 2011 Tarikh:

"I hereby declare that this report is the result of my own work except for quotes as cited in the reference"

Signature	:
Author	: RAJA MARIATUL QIBTIAH BT RAJA JAAPAR
Date	: 20 th April 2011

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours"

Signature	:
Name	: ENGR. FAKRULRADZI BIN IDRIS
Date	:

Dedicated, in thankful appreciation for support, encouragement and understandings to my beloved father, mother, brother, sister, lecturers and friends.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere appreciation to my Final Year Project supervisors Mr.Fakrulradzi bin Idris for his continuous guidance, encouragement and thought that has given to me through completing this project.

My appreciation also goes to my beloved family for their understanding, endless love and support, emotionally and financially all these years.

I would also like to thank CLEANER LAB team (staff and students) for their co-operations, guidance, help and invaluable assistance in this project.

Special thanks also go to all my friends for their kindly help and supports. And for those who give me support directly or indirectly to finish my final year project and throughout my 8 semesters in UTeM, thank you very much

ABSTRACT

Nowadays, a conventional method to gather water consumption data from water meters in residential areas by using human recorders are costly and time consuming at especially urban residential area. The technology of wireless water meter system is a method to send water consumption data from the resident to mobile billing units would improve the service quality of billing system and increase revenue by reducing labor cost. In this project, wireless water meter system was developed in order to give solution based on this problem. The XBee Wireless Technology are used to send the water consumption data automatically to the mobile water meter reader. Microcontroller 16F877A was used as a processor to control the XBee Wireless Technology with coverage up to 100 meter of range and low power consumption. The developed product can be integrated with existing commercial water meter and support residential, commercial and industrial consumer.

ABSTRAK

Perubahan Pengambilan data bagi penggunaan air menggunakan meter air di kawasan perumahan dengan meggunakan kaedah sedia ada seperti catatan daripada pekerja menyebabkan kos yang tinggi dan penggunaan masa yang banyak terutamanya di kawasan bandar. Sistem berteknologi meter air tanpa wayar adalah satu kaedah penghantaran data tanpa wayar daripada kediaman pengguna kepada stesen kawalan (Mobile meter reader) bagi memperbaiki kualiti perkhidmatan dan mengurangkan kadar kos pekerja. Hal yang demikian, Sistem meter air tanpa wayar dicipta bagi menyelesaikan masalah ini. XBee Wireless Technology digunakan untuk menghantar data secara automatik ke mobile water meter reader. Cip 16F877A pula digunakan untuk mengawal XBee Wireless Technology untuk penghantaran data sehingga 100 meter dan penggunaan kuasa yang rendah. Produk ini dapat diintegrasikan apabila wujudnya meter air secara komersial dengan sokongan pengguna, dan pihak perindustrian.

TABLE OF CONTENTS

TITLE

CHAPTER

1

DECLARATION	i
DEDICATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ABSTRAK	V
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF APPENDICES	xiv

INTRODUCTION 1.1 Project Background 1 1.2 Project Objective 2 1.3 Scope of Work 2 Problem Statement 2 1.4 1.5 Work Breakdown 3 1.6 Work Flow 4

PAGE

LITERATURE REVIEW				
2.1	Introduction	7		
2.2	Approaches	8		
	2.2.1 Radio Frequency (RF)	8		
	2.2.2 Mobile Telephone Network	8		
	2.2.3 Direct Wire Connection	9		
2.3	System Description	9		
2.4	Existing Digital Water Meter Classification	10		
2.5	Design Issues	12		
2.6	Radio Frequency Utilization	11		
	2.6.1 Frequency, Period, and Bandwidth	12		
	2.6.1.1 Period	14		
	2.6.1.2 Frequency	15		
	2.6.1.3 Bandwidth	15		
	2.6.2 IEEE Standard	15		
	2.6.2.1 802.11 (Standard)	16		
	2.6.2.2 ZigBee (Standard)	17		
2.7	Microcontroller System	19		
	2.7.1 Microcontroller Features	20		
	2.7.2 PIC 17F877 Architecture	20		
2.8	Software Programming	22		
	2.8.1 MicroC	22		

2

Thesis Outline

1.7

6

	2.8.2	Visual I	Basic (VB.NET)	22
		2.8.2.1	Requirement VB.NET	22
2.9	SK400	C Enhanc	ed 40 pins Start-up Kit	24
2.10	Toggle	e Switch	Single Pole Double Throw	25
DESI		TIMDI	εμενίτατιον	
DESIGN AND IMPLEMENTATION				

	3.1	Introduction		27	
	3.2	System Advantages		29	
	3.3	Hardw	Hardware Implementation		29
		3.3.1	Elemen	t of System	27
			3.3.1.1	Microcontroller	30
			3.3.1.2	ZigBee Protocol	34
			3.3.1.3	Transceiver	36
			3.3.1.4	Potentiometer	37
			3.3.1.5	SK40C Enhance start-up Kit	38
	3.4	Softwa	are Imple	ementation	41
		3.4.1	Graphic	cal Unit for User Interface (GUI)	42
RESULT AND ANALYSIS					
	4.1	Expec	ted Resu	lt	43

	-	
4.2	Testing the Functionality of the Prototype	44
	4.2.1 Procedure	45
4.3	Samples collection and testing	45
4.4	Communication Link with Mobile WWM Reader	51

CONCLUSION AND RECOMMENDATION

5.1	Hardw	vare Development	52
5.2	Software Programming		
	5.2.1	A Device to Block the Water Supply	53
	5.2.2	Change Xbee Module to Xbee Pro	53
	5.2.3	Enhancement the system in automatically	53
REFF	RENC	ES	54

APPENDIX	55

LIST OF TABLES

TABLES	TITLE	PAGE

2.1	Classification of Existing Digital Water meter	11
2.2	Classification of Existing Digital Water Meter	13
2.3	Specification Band for RF spectrum	16
2.4	Common Wireless application and Frequency	16
2.5	Comparison with RF Module	19
2.6	Types of Visual Basic	24
3.1	LCD Pins Function	33
3.2	Comparison between ZigBee, Bluetooth and Wi-Fi	34
3.3	Specification of SK Xbee	36
3.4	Specification of Rotary Potentiometer	38
3.5	Function of SK-40C	40

LIST OF FIGURE

TITLE

1.1	Example of WWM System from Digital Meter to	1
	Control Station	
1.2	Work Breakdowns for the Project	3
1.3	Work Flow of This Project	5
2.1	Configuration of Water Meter in Residential area	10
2.2	ZigBee Module	16
2.3	PIC 16F877A Internal Architecture	19
2.4	SK40C Enhanced 40 Pins PIC Start-up Kit	22
3.1	Direct connections between Meters with Different	25
	Meter Number	
3.2	Block Diagram of the design system	25
3.3	Block Diagram for Wireless Water Meter System	27
3.4	Example of Microcontroller Chip	28
3.5	Communication between Transmitter and receiver system	29
3.6	Flow of Software Design	31

FIGURE

PAGE

3.7	Form1	32
4.1	Architecture of Rotary Potentiometer	34
4.2	PIC 16F877A Pin Diagram	35
4.3	SK40C Enhanced 40 Pins PIC Start-up Kit	36
4.4	Side View	37
4.5	Bottom View	37
4.6	LCD (2X16 Characters)	38
4.7	LCD Connections Pins	39
4.8	Board Layout of SkXbee	41
4.9	Connection between microcontroller and SkXbee	41
5.1	View of Wireless Water Meter	43
5.2	Connections between PC and WWM	44
5.3	System ON	46
5.4	Potentiometer as Water Tap	46
5.5	Transmission data from WWM to Mobile Meter Reader	46
5.6	Set the WWM Port	47
5.7	Set the Baud Rate	47
5.8	Search the ID No of Meter	47
5.9	Port connected	48
5.10	Port Disconnected	48
5.11	Mobile Wireless Water Meter Reader	49

LIST OF APPENDIX

APPENDIX	TITLE	PAGE
А	Specification of the Xbee/XbeePro Oem Rf Modules	53
В	Pin Assignments for the Xbee and Xbee – pro modules	54
С	Analog to Digital in Microcontroller	55
D	coding of wireless water meter system	56

CHAPTER I

INTRODUCTION

1.1 Project Background

Wireless water meter system is a system that is collect billing from residential areas where this system capable to improve the accuracy of billing system. The ZigBee wireless was use together data from the water meter. ZigBee is a wireless technology developed as an open global standard to address the unique needs of low cost, low power, wireless sensor network. In addition, the ZigBee protocol carries all the benefits of the 802.15.4 protocol with added networking functionality. The data would transmit to mobile meter reader with less of error. The develop system are more practical and affections to reduces the maintenances cost and improve the services quality of billing system.

Figure 1.1 Example of wireless water meter system from digital meter to control station.

1.2 **Project Objectives**

Thus this project includes several objectives and aims:

- i. To design and develops a digital wireless water meter system.
- ii. To study sending and communicate data with control station using ZigBee.
- iii. To improve the accuracy of billing system, reduced the maintenances cost and also improve the service quality of utility authorities.

1.3 Scopes of Work

The scope of this project covers:

- i. Use ZigBee as wireless system to communicate with mobile meter reader.
- Design and develop a wireless water meter that interface the water volume measurement instrument with wireless device that be able to communicate with a mobile meter reader.
- iii. The XBee Wireless technology is used to send the water consumption data automatically to the mobile water meter reader.

1.4 Problem Statement

 Traditional method to gather data from residential meters: Sending technicians to a residential area then record data manually for further processing, this method usually results in high labor costs.

- ii. It could easily cause human errors:A technician may record wrong data from a meter because of his exhaustion or faded colors on a numerical display.
- iii. Microcontroller 16F877A was used as a processor to control the XBee
 Wireless Technology with coverage up to 100 meter of range and low power
 consumption

1.5 Work Breakdown

In order to achieve the objective of this project, there are several tasks that need to be done as shown in Figure 1.2 below. These tasks are divided into three main categories that are study, design and implementation. The related items that need to study in detail are the principle of the analog to digital converter, microcontroller architecture, programming for microcontroller and programming for graphical user interface.

Other than that, for this system it is needed to design the system block Diagram, hardware circuit, software algorithm and software programming. Following the design is the implementation of the hardware, software and system integration.

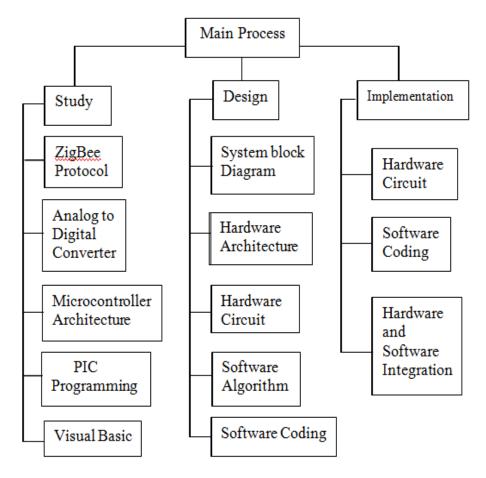


Figure 1.2 Work Breakdowns for the Project

1.6 Work Flow

The summary of work flow for this project is simplified into block diagram as shown in the Figure 1.3 below. The starting point of this project is the literature review and theoretical study. But, these actions are continuous as new information must be gathered from time to time in order to proceed with this project.

After having an overview of the component to include in this project, the suitable components were selected based on the scope and limitation of this project. Hardware implementations begin after the components were available. On the other hand, software implementations begin with algorithm for the analog to digital 5 converters and continue with the graphical user interface. After that, the whole system was integrated for testing and optimization before the real demo and presentation to the panel of the final year project.

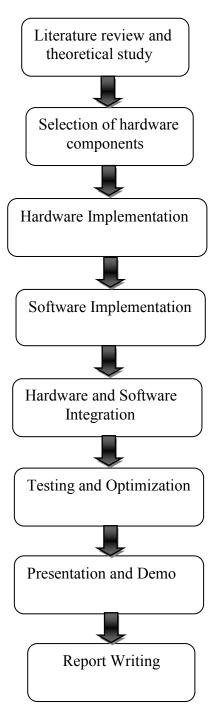


Figure 1.3 Work flow of This Project

Figure 1.3 shows the detail of the works done with the time spending on it for the duration of two semesters.

1.7 Thesis outline

This thesis is a report of a final year project of title "Wireless Water Meter System". There are five main chapters explained in detail within this thesis. Chapter 1 explain in detail the information about the project background, problem statement, objectives, scope, work flow, thesis content and work breakdown. In this chapter, the reader could find out the overview of this project and also the significant of this project. Next in chapter 2, the related literature to this project is provided in detail. The topic explained in this chapter included approaches, Design issues, Radio frequency utilization, software programming and basic of hardware involve. Chapter 3 is about design and implementation. In this chapter, the design and implementation step is explained in detail including the prototype. In Chapter 4, all the results and analysis about the system either it achieve the objectives or not and the last, Chapter 5 summarizes this project and with recommendations.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter presents the fundamental of ZigBee Protocol and the principle used to transmit and receive the data by using wireless communication system. This chapter also describes the content of PIC architecture, types of LCD Display, software programming, communication standard and other relevant fundamentals and components used in the project.

Traditional method to gather data from residential meters such as water meters to by sending technicians to a residential area. The technicians then record data manually into notebooks or electronic PDAs and store these data into a database for further processing. This method usually results in high labor costs and could easily cause human errors due to several factors. For example, a technician may record wrong data from a meter because of his fatigue or faded colors on a numerical display. To do remote metering, existing analog water meters have to be converted to digital ones. Also the information consumed water volume must be transmitted to the center through wireless communication equipments.

2.2 Approaches

There are several approaches have been proposed to improve meter data gathering to reduces costs and error. Currently applied approaches can be categorized as follows:

2.2.1 Radio Frequency (RF)

RF communication is applied to transmit data from the water meters to a base station as follows:

i. Fixed Based Station

In this method, meters directly transmit data using RF links to a fixed based station. However, this method can cover only a small area close to the station since the effective distance of RF propagation from a water meter to a high gain antenna at the base station is limited to short range due to limited battery powers of meters.

ii. Mobile Radio Station

This method is known as "walk-by" or "drive-by" method. A technician can carry a mobile station to read data from meters by either walking or driving into an area within an effective RF distance. For a small antenna, the effective distance is about 50–100 m from a meter.

2.2.2 Mobile Telephone Network

In this approach, a meter utilizes a cellular telephone network to send data via MS or GPRS to a base station. Although this method offers a longer effective distance, less human labor costs, and ease to gather data, but communication equipment and calling services from many meters to a based station are expensive. Thus, this approach is usually applied at where the number of meters used is low and for large consumers such as industrial plants. With a capability to collect data from areas to a base station using an ad-hoc manner, a wireless sensor network becomes an alternative for data gathering of water meters. An ad-hoc configuration can be utilized to gather data from a large number of sensor nodes to a sink node or a base