WIRELESS SOLAR CHARGER

SITI NOR AZURA BINTI RAHMAN

This report is submitted in partial fulfillment of requirements for the award of Bachelor of Electronic Engineering (Wireless Communication) with Honours

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

May 2011

AND ALAYSIA MALAYSIA MALAYSIA		KEJUR BOR	UTER.	AAN E KO ENGES	KAL MALAYSIA MELAKA Elektronik dan kejuruteraan Omputer ahan status laporan A RJANA MUDA II
0 0	WIRELES	SS SO	LAR (CHAF	RGER
Sesi : Pengajian [:]	1 1	/	1	2	
 syarat-syarat kegunaa Laporan adalah h Perpustakaan dib Perpustakaan dib institusi pengajia Sila tandakan () 	an laporan in seperti be akmilik Un enarkan me enarkan me n tinggi.	Projek erikut: iiversiti embuat embuat *(Mer	Sarjan i Tekn salina salina	ikal M n untu n lapo ngi mal	k tujuan pengajian sahaja. ran ini sebagai bahan pertukaran antara slumat yang berdarjah keselamatan atau
SULIT*			tingan I SIA RA		ia seperti yang termaktub di dalam AKTA 972)
TERHAD*	TERHAD ** **(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)				
TIDAK TE	CRHAD				
					Disahkan oleh:
(TANDATANGAN PENUL Alamat Tetap : 1063 Blok 4 81900 Kota T	Felda Lok Her	ng Timur			(COP DAN TANDATANGAN PENYELIA)
Tarikh: 2 May 2011					Tarikh: 2 May 2011

"I hereby declare that this report is the result of my own work except for quotes as cited in the references"

	a f
Signature	
Author's name	: SITI NOR AZURA BINTI RAHMAN
Date	: 2 May 2011

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of the Bachelor of Electronic Engineering (Wireless Communication) with Honours."

	NAJMIAH RACIAH BINTI MOHAMAD Pensyarah Induktraan Deritoria Dan Kejar denain Komp Umerent Terendar Materia Metana UTAW
Signature	Karung Berkuno Ne 1752 Rejubat Ros Ducian Tungan 76195: Dunan Tunggat Melaka
Name of supervisor	: Miss Najmiah Radiah binti Mohamad
Date	: 2 May 2011

DEDICATION

To beloved husband, mother, father, my supervisor (Miss Najmiah Radiah Bt Mohammad) and all my friend who are supported and helping me during doing this thesis until completed.

ACKNOWLEDGEMENT

I would like to take the opportunity to recognize several people who had a considerable influence on my ability to complete this report and project.

First of all thank to Allah, The Omnipotent who created everything and giving me the ability to start and complete this project. I wish to express my sincere appreciation to my supervisor, Miss Najmiah Radiah Bt Mohamad for her guidance, advice and encouragement. Without your help and support, this project and report would not have been the same as presented here.

Then, I want to thank to my beloved husband for his patient, support and love helping me during do this project. I also want to thank to my family, my mother and father for their moral support throughout my study. Last but not least, thanks you to my best friend, Faezah binti Hashim to give some idea to make this project successfully. Finally, my sincere appreciation also extends to all my colleagues in wireless communication who have provided assistance at various occasion. Thank you.

ABSTRACT

In the present era of science and technology, everyone has a mobile phone for business or personal use. Existing mobile phones today can only be charged directly into electricity through a wire. For a more efficient, this project proposes the use of solar energy instead of electricity and then transmitted wirelessly to a mobile phone. The signal was transmit from transmitter circuit Radio Frequency (RF) and taken by the antenna at the RF receiver circuit. In this project, as a prototype the lamp has power 60 Watt was used to change the solar energy. The output from the RF receiver circuit, it can charge the phone battery from 3.5 V until 5 V through the air in range of 10 meters. Solar battery charger is suitable for commercial use because of low cost and requires no electricity

ABSTRAK

Dalam era sains dan teknologi kini, setiap orang mempunyai telefon bimbit untuk tujuan perniagaan atau kegunaan peribadi. Telefon bimbit sedia ada masa kini hanya boleh dicas secara terus ke bekalan elektrik melalui wayar. Sebagai cara yang lebih efisyen , projek ini mencadangkan penggunaan solar sebagai pengganti tenaga elektrik dan kemudiannya dihantar ke telefon bimbit secara wayarles. Cara yang digunakan adalah dengan dengan menghantar isyarat menggunakan litar penghantar Radio Frekuensi (RF) dan diambil oleh antenna pada litar penerima RF. Dalam projek ini, lampu 60 watt digunakan menggantikan tenaga suria dan keluaran daripada litar penerima RF, ianya dapat mengecas bateri telefon daripada 3.5 V sehingga 5 V dan tanpa menggunakan wayar dalam jarak 10 meter. Pengecas bateri solar ini sesuai untuk kegunaan komersil kerana kos yang rendah dan tidak memerlukan tenaga elektrik.

CONTENT

CHAPTER	TITLE	PAGE
	PROJECT TITLE	i
	DECLARATION	iii
	DEDICATION	V
	ACKNOWLEDGEMENT	vi
	ABSTRACT	vii
	ABSTRAK	viii
	CONTENTS	viiii
	TABLE LIST	xiii
	FIGURE LIST	xiv
	GRAPH LIST	xvi
	LIST OF ABBREVATION	xvii
	LIST OF APPENDIX	xviii

Ι

INTRODUCTION		
1.1	Background	1
1.2	Project objective	3
1.3	Problem statement	3

1.4	Project scope	3
1.5	Methodolgy	4
1.6	Thesis outline	4
THEO	ORITICAL BACKGROUND	6
2.1 Ph	otovoltaic panel	6
	2.1.1 Type of photovoltaic panel	7
	2.1.1.1 Monocystalline solar panel	7
	2.1.1.2 Polycrystalline solar panel	8
	2.1.1.3 Amorphous solar panel	8
	2.1.1.4 Flate plate solar collector	9
	2.1.2 Different between type of photovoltaic panel	9
	2.1.3 Solar panel operation	10
	2.1.4 Advantage of photovoltaic panel	10
2.2 M	obile phone battery	13
	2.2.1 Comparison between NiCd	14
	and Li-Ion (Lithium-Ion)	
2.3 Pr	evious solar battery charger	15
	2.3.1 Disadvantage of solar	16
	battery charger	
2.4 Ph	otovoltaic panel	17
2.5 RF	Ftransmitter	19
2.6 RF	Freceiver	19

II

[LITERATURE REVIEW	20
	3.1Wireless energy transfer	20
	3.2 Universal wireless charger	21
	3.3 Wireless energy transfer	23

IV	METHODOLOGY	25
	4.1 Equipment and material	25
	4.1.1 Solar panel	25
	4.1.2 Light bulb	26
	4.1.3 Push button switch	28
	4.1.4 Light emitting diode (LED)	29
	4.1.5 Digital multimeter	29
	4.1.6 RF decoder/encoder 4 bit	30
	4.2 Experimental procedure	31
	4.2.1 Introduction	31
	4.3 Flow chart for project implementation method	33
	4.4 Project procedure	34

4.4 Method troubleshoot

III

35

RESULT AND DISCUSSION

V

5.1 Result	37
5.2 Project analysis	38
5.2.1 PV panel	38
5.2.2 RF transmitter	43
5.2.3 RF receiver	44
5.3 Overall project	46
5.4 Discussion	48

VI CONCLUSION AND RECOMMENDATION 49

6.1 Conclusions	49
6.2 Future recommendation	50

REFERRENCE

APPENDIX

37

TABLE LIST

NO	TITLE	PAGE
2.1	Electrical parameter of the solar module	7
2.2	Comparison between solar panel	10
5.1	Comparison of solar panel 12V wired in series and parallel	40

FIGURE LIST

NO TITLE PAGE

2.1	Monocrystalline solar panel	7
2.2	Polycrystalline solar panel	8
2.3	Flat plate collector	9
2.4	Solar panel operation	12
2.5	Solar charger process	15
2.6	Circuit of PV panel	17
3.1	Wireless charging system architecture	21
3.2	Block diagram of the overall design	24
4.1	Amorphous solar panel	25
4.2	Light bulb	26
4.3	Push button switch	28
4.4	Light emitting diode (LED)	29
4.5	Digital/analog multimeter	29
4.6	RF transmitter and receiver	30
4.7	Flowchart process of designing the project	33
5.1	Wireless smart charger	38
5.2	Amorphous solar panel	39

5.3	Solar panel	42
5.4	RF transmitter circuit diagram	43
5.5	RF transmitter circuit	43
5.6	RF receiver circuit diagram	44
5.7	RF receiver circuit	44
5.8	Wireless charger prototype	46
5.9	Block diagram of Wireless solar charger	48

GRAPH LIST

NO	TITLE	PAGE
2.7	Isolation performance of PV	18
5.1	Comparison of solar panel 12V wired in series and parallel	41

LIST OF ABBREVATION

PV	-	Photovoltaic
DC	-	Direct current
AC	-	Alternating current
LED	-	Light emitting diode
IC	-	Integrated circuit
USB	-	Universal serial bus

LIST OF APPENDIX

NO	TITLE	PAGE
A	Solar energy	53
В	Solar battery charger	60
С	Solar energy smart charger	72
D	Solar wireless charger	76
Е	Poster	82

CHAPTER 1

INTRODUCTION

This chapter will give an overview of the project such as project background, project objective, project scope, project methodology and a summary of this project. This chapter will explain briefly about the work from the beginning until the project is implemented.

1.1 Project background

Nowadays, most chargers are used in everyday requires us to uses electric cables to charge to the phone. But it is difficult for us to wait until the phone battery charge is fully charged before move to the different places. Lately, battery charger using solar energy need to locate under the sun but still uses the wire to connect the charger to the mobile phone.

A variant of this project compared to the chargers in the market is that it uses solar energy replaces electricity. In addition, it is also in charge the batteries in wireless. If you look at the technology in our time, most devices use wireless systems. By using solar panels (photovoltaic), solar energy was capture from the sun and then activated the transmitter before it transmits the energy.

According to the literature, the amount of nonrenewable energy such as petroleum and coal has been gradually becoming insufficient to meet demands. The problem of nonrenewable energy crisis has stimulated rapid development of renewable energy technology. Furthermore, mobility is increasingly viewed as an essential attribute of today's lifestyle, both personal and professional. So, advanced electronic devices such as cellular phones and portable computer now permit people on the move to operate more effectively than was possible at home and office bound environments of a generation ago. But the price of mobility has been increasing demanding and depending on the portable power source.

In this project, wireless smart charger is designed to introduce an alternative source where it is allows users to charge the phone using the sun without install the charging into the electric power. The users of solar panels are thin and small as a main component so it allows and enables users to take anywhere. This project was applied to cellular phone because they included from all aged stage and make easier for them to charging the batteries.

1.2 Project objectives

The objective of this project is to study the characteristic of solar energy as an alternative source. The topics was discuss in this thesis include the type of solar panel, the advantage and disadvantage used the solar panel. It is also about the output voltage can this solar panel can produce based on their type.

Then, other objective is to transfer the energy generated from solar cell via Radio Frequency (RF) for charging the battery of mobile phone. It is about the energy was produce using the RF transmitter and the receiver. It also discuss about the suitable frequency was used to make this project function properly.

1.3 Problem statement

This project was undertaken as a solution for the problem occurs on the previous design of wireless charger. The previous charger used the same basic of solar charger but it still used the wired to connect between solar charger and mobile phone. Moreover, charger in the market today also can charge the mobile phone but it cannot charge in the long range. So, this project was design to overcome the problem and get better result.

1.4 Project scope

The project scope for this project is finding solution to charging the mobile phone without wire and used the solar energy as a souce. It is produce the energy using solar panel (photovoltaic) and transfer it through the air via Radio Frequency (RF) from transmitter to the receiver. The type of solar panel was used is an Amorphous where it can produce 12 volt as an output.

1.5 Methodology

In this project, the solar cell was used as an alternative source to change the electrical energy. Using the RF transmitter and receiver, the energy will be transfer trough air to charge the mobile phone. Using the component was show in chapter four, the project was design to get the result before it used to analysis the data. The method was used in this project have a few stage that will be involved in order to work out the aimed objectives in this project.

The project was beginning by discussion with the supervisor and collects the data from the book, journal and others. This project was dividing in two part where it is transmitter and receiver part. At transmitter part, it consists with the solar panel as the source and radio frequency (RF) transmitter. In the receiver part, it consist wit RF receiver and mobile phone.

1.6 Thesis Outline

This report has six (6) chapters will explain in detail about this project. The first chapter is an introduction in which the chapter will provide a brief description of the project is implemented as a background, project objectives, project scope, problem statement and expected result.

The second chapter a theoretical background where any facts and information obtained through the different reference materials will be reviewed to select one of the related techniques and methods to implement this project.

The third chapter a literature review, where the information from the previous project can be a guide for this project. From this information, the project was implementing for improvement.

The fourth chapter is a methodology where it will describes the methods and technique selected for implementation as in the previous chapter with in depth. In this chapter, it provides the material and equipments were used to doing this project.

The fifth chapter is a chapter that will explain the result and analysis of the project that have been studied. From the result, the analysis was do to see the project is function properly.

The last chapter of the fifth chapter in this report is conclusions and recommendations. In this chapter, conclusions are made on achieving the objective of the project.

CHAPTER II

THEORITICAL BACKGROUND

This chapter discusses the theories was used in this project. It used as guideline during project was do and all theory and research are related with this project.

2.1 Photovoltaic panel

This solar panel also known as photovoltaic (PV) panel is a packaged interconnected assembly of solar cells. It is one of the best renewable energy technologies because it would not produce noise, air pollution or green house gases [1]. It is used as a component in a larger photovoltaic system to offer electrical source for this project. Basically, it must withstand heat, cold and rain. Furthermore, the size of the solar panel is thin and small but can produce a big amount of power. The solar panel absorbers the energy from the sun as a power to produce the electrical energy.