# SIMULATION FOR HELICOPTER CONTROL SYSTEM USING LQR CONTROLLER

## AHMAD ZUL FADZLI BIN MANSOR TARIDI

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > APRIL 2009

| Tajuk Projek :<br>Sesi<br>Pengajian                                                     | UN<br>FAKULTI KEJUF<br>Simulation Fe<br>2008/2009                        | IVERSTI TEKNIKAL MALAYSIA MELAKA<br>RUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER<br>BORANG PENGESAHAN STATUS LAPORAN<br>PROJEK SARJANA MUDA II<br>or Helicopter Control System Using LQR Controller |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saya<br>mengaku membena<br>syarat kegunaan se<br>1. Laporan adalal                      | <u>AHMAD</u><br>arkan Laporan Pro<br>perti berikut:<br>h hak milik Unive | 2 <u>ZUL FADZLI BIN MANSOR TARIDI</u><br>(HURUF BESAR)<br>jek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-<br>rsiti Teknikal Malaysia Melaka.                                            |
|                                                                                         |                                                                          |                                                                                                                                                                                                      |
| 2. Perpustakaan d                                                                       | dibenarkan membi                                                         | lat salinan untuk tujuan pengajian sahaja.                                                                                                                                                           |
| <ol> <li>Perpustakaan opengajian ting</li> <li>Sila tandakan opengalian ting</li> </ol> | dibenarkan membu<br>gi.<br>( √ ):                                        | uat salinan laporan ini sebagai bahan pertukaran antara institusi<br>(Mengandungi maklumat yang berdarjah keselamatan atau                                                                           |
| SU                                                                                      | LIT*                                                                     | kepentingan Malaysia seperti yang termaktub di dalam AKTA<br>RAHSIA RASMI 1972)                                                                                                                      |
| ТЕ                                                                                      | RHAD*                                                                    | (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)                                                                                            |
| √ TH                                                                                    | DAK TERHAD                                                               |                                                                                                                                                                                                      |
|                                                                                         |                                                                          | Disahkan oleh:                                                                                                                                                                                       |
| (TANE                                                                                   | DATANGAN PENULI                                                          | S) (COP DAN TANDATANGAN PENYELIA)                                                                                                                                                                    |
| Alamat Tetap: No 2                                                                      | 6, Jln Assamara,                                                         |                                                                                                                                                                                                      |
| Tama                                                                                    | an Assamara,                                                             |                                                                                                                                                                                                      |
| 3400                                                                                    | 0, Taiping                                                               |                                                                                                                                                                                                      |
| Tarikh 30/04/09                                                                         |                                                                          | Tarikh:                                                                                                                                                                                              |

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

| Signatures | :                                    |
|------------|--------------------------------------|
| Author     | : AHMAD ZUL FADZLI BIN MANSOR TARIDI |
| Date       | : 30 APRIL 2009                      |

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronic Engineering) With Honours."

| Signature | :                           |
|-----------|-----------------------------|
| Author    | : EN MOHD SHAKIR B. MD SAAT |
| Date      | : 30 APRIL 2009             |



For you, my mom and dad For your truly support and undivided love

For making me the person

Who I am today...



#### ACKNOWLEDGEMENT

I would like to thank God upon his bless until I will be able to completed this project for my Final Years Project (PSM). First of all, I would like to take this opportunity to express my appreciation to some organizations and individuals who have kindly contributed for my my final year project in UTeM. With the cooperation and contributions from all parties, the objectives of the project; soft-skills, knowledge and experiences were gained accordingly. At this moment, I would like to give a special thanks to my supervisor, En Mohd Shakir B. Md Saat. Without his supervision, this project will not complete successfully and the objective of this project cannot be reach. For my beloved parents, thank you for giving your support, patience, understanding and most of all love, the completion of this works would not have been possible. To all of my friends, lecturers and other people who help me directly or indirectly, thank you very much for your guidance. Hopefully, God will repay all your effort by helping me in this project.



#### ABSTRACT

This project will present detailed procedure on how to construct a basic mathematical model that represents general longitudinal helicopter flight dynamics. The establishment of global helicopter linear model is very precious and useful for the design of the linear control laws, since it is never afforded in the published literatures. In the first principle approach, the mathematical model was developed using basic helicopter theory accounting for particular characteristic of the miniature helicopter. The system presents a step by step development of linear model for small scale helicopter based on first-principle approach. The procedure will start from linearizing the translational and rotational dynamics and rotational kinematics equations of motion using the small perturbation theory. There are certain assumptions made for the sake of simplifications. The next step is to construct the fundamental linearized form for describing the stability and response of a small motion of a helicopter around a trim condition. Beyond the previous work, the calculation of the stability derivatives is presented in detail. A computer program is used to solve the equilibrium conditions and then calculate the change in aerodynamics forces and torque due to the change in each degree of freedom and control input. The detail derivation allows the comprehensive analysis of relative dominance of helicopter states and input variables to force and torque components. Hence it facilitates the development of minimum complexity small scale helicopter dynamics model.

#### ABSTRAK

Projek ini akan menjelaskan dengan terperinci langkah-langkah bagaimana untuk membina sebuah model asas matematik yang mewakili satah umum yang membujur untuk penerbangan helikopter yang dinamik. Penubuhan global model helikopter 'linear' sangat berharga dan berguna dalam reka bentuk undang-undang kawalan 'linear' sejak ia tidak mampu dibuktikan. Berdasarkan prinsip pertama, model matematik adalah dibangunkan dengan menggunakan teori asas helikopter yang dikira untuk ciri-ciri khusus helikopter miniatur. Sistem menunjukkan satu perkembangan selangkah demi selangkah model 'linear' untuk helikopter berskala kecil berdasarkan prinsip pertama. Langkah tersebut dimulakan dari persamaan peralihan gerakan 'linear', putaran gerakan dinamik dan putaran gerakan kinematik dengan menggunakan teori gangguan yang kecil. Terdapat andaian-andaian yang digunakan demi memudahkan proses pengiraan. Langkah seterusnya adalah untuk membina dasar 'linear' yang dibentuk untuk menggambarkan kestabilan dan tindakbalas satu pergerakan yang kecil sebuah helikopter pada satu keadaan yang teratur. Berdasarkan kerja-kerja terdahulu, pengiraan untuk kestabilan dilakukan dengan terperinci. Satu program komputer digunakan untuk menyelesaikan keadaan keseimbangan dan kemudian mengira perubahan dalam daya aerodinamik dan 'torque' disebabkan oleh perubahan dalam setiap darjah kebebasan dan masukan kawalan. Ketelitian membuatkan analisis menyeluruh berhubungkait dengan status helikopter dan pembolehubah masukan kepada komponen daya dan 'torque'. Oleh yang demikian ia memudahkan pembangunan yang rumit pada tahap minima untuk model berskala kecil helikopter dinamik.

# LIST OF CONTENTS

| CHAPTER | CONTENT | PAGE |
|---------|---------|------|
|         |         |      |

| TITLE OF PROJECT     | i     |
|----------------------|-------|
| DECLARATION          | ii    |
| DEDICATION           | V     |
| ACKNOWLEDGEMENT      | vi    |
| ABSTRACT             | vii   |
| ABSTRAK              | viii  |
| LIST OF CONTENT      | ix    |
| LIST OF TABLES       | xiii  |
| LIST OF FIGURES      | xiv   |
| LIST OF ABBREVIATION | xvii  |
| LIST OF APPENDIXES   | xviii |
|                      |       |

# I INTRODUCTION

| 1.1 | OBJECTIVES          | 2 |
|-----|---------------------|---|
| 1.2 | PROBLEM STATEMENT   | 2 |
| 1.3 | SCOPE OF PROJECT    | 3 |
| 1.4 | PROJECT METHODOLOGY | 4 |
| 1.5 | REPORT ORGANIZATION | 5 |

#### II LITERATURE REVIEW

| 2.1 | BASIC HELICOPTER CONTROLLING SYSTEM              | 8  |
|-----|--------------------------------------------------|----|
|     | 2.1.1 The Basic of Pitch                         | 9  |
|     | 2.1.1.1 Collective Control                       | 9  |
|     | 2.1.1.2 Cyclic Control                           | 11 |
|     | 2.1.1.3 Rotational (yaw) Control                 | 13 |
|     | 2.1.1.4 Throttle Control                         | 14 |
|     | 2.1.2 How Blade Generate Lift                    | 15 |
|     | 2.1.3 FP (Fixed Pitch) vs. CP (Collective Pitch) | 17 |
| 2.2 | RC HELICOPTER CONTROL CHANNEL                    | 19 |
| 2.3 | HELICOPTER SENSORS                               | 20 |
|     | 2.3.1 The Gyro                                   | 21 |
|     | 2.3.2 RC Helicopter Mixer Boards                 | 22 |
| 2.4 | THE ATMOSPHERE AND AIR DATA                      | 22 |
|     | MEASUREMENT                                      | 23 |
|     | 2.4.1 The Characteristic of the Atmosphere.      | 23 |
|     | 2.4.2 Winds and Turbulence                       | 24 |

# III PROJECT METHODOLOGY

| 3.1 | GENERAL CONCEPT    | 20 |
|-----|--------------------|----|
| 3.2 | PROJECT FLOW CHART | 28 |

# IV MATHEMATICAL MODEL

| 4.1 | MODEL STRUCTURE                  | 30 |
|-----|----------------------------------|----|
| 4.2 | GENERAL EQUATION OF MOTION (EoM) | 32 |

| 4.3 | TRANSLATIONAL EQUATION | 36 |
|-----|------------------------|----|
| 4.4 | ROTATATIONAL EQUATION  | 38 |
| 4.5 | EULER'S ANGLE          | 42 |
| 4.6 | PARAMETER              | 43 |

## V LQR CONTROLLER

| 5.1 | EQUATION OF LQR | 46 |
|-----|-----------------|----|
| 5.2 | STABILITY       | 49 |

# VI VIRTUAL REALITY TOOLBOX

| 6.1 | VRML VIEWERS                   | 51 |
|-----|--------------------------------|----|
| 6.2 | VRML EDITOR                    | 51 |
| 6.3 | VRML COORDINATE SYSTEM         | 52 |
| 6.4 | APPLICATION VIRTUAL REALITY IN |    |
|     | HELICOPTER SYSTEM              | 54 |

# VII RESULT AND DISCUSSION

| 7.1 | RESU  | LT FROM M-FILES FOR OPEN-LOOP                 | 60 |
|-----|-------|-----------------------------------------------|----|
|     | 7.1.1 | The State-Space                               | 60 |
|     | 7.1.2 | The Transfer Function                         | 61 |
|     | 7.1.3 | The Eigenvalue                                | 62 |
|     | 7.1.4 | Poles-Zero Map                                | 63 |
| 7.2 | RESU  | LT FROM M-FILES FOR CLOSED-LOOP               | 64 |
|     | 7.2.1 | The Matrix Value of State-Space in Simulation | 64 |
|     | 7.2.2 | LQR in MATLAB                                 | 65 |
|     | 7.2.3 | The Transfer Function                         | 66 |
|     | 7.2.4 | The Eigenvalue                                | 66 |

xi

|     | 7.2.5 | Poles-Zero Map             | 67 |
|-----|-------|----------------------------|----|
| 7.3 | SIMUL | INK FOR OPEN-LOOP SYSTEM   | 68 |
|     | 7.3.1 | Input System               | 69 |
|     | 7.3.2 | Output System              | 70 |
| 7.4 | SIMUL | INK FOR CLOSED-LOOP SYSTEM | 74 |
|     | 7.4.1 | Output System              | 75 |
| 7.5 | SIMUI | LINK FOR UAV SYSTEM        | 79 |
|     | 7.5.1 | UAV INPUT                  | 79 |
|     | 7.5.2 | UAV OUTPUT                 | 80 |
| 7.6 | DISCU | JSSION                     | 82 |

# VI CONCLUSION

| 5.1 | CONCLUSION           | 84 |
|-----|----------------------|----|
| 5.2 | FUTURE RECOMENDATION | 85 |
|     |                      |    |

| REFERENCES | 86 |
|------------|----|
|            |    |



# LIST OF TABLE

## NUM TITLE

## PAGE

| 2.1 | RC Channel Mode                    | 19 |
|-----|------------------------------------|----|
| 4.1 | Moments and Product of Inertia     | 40 |
| 4.2 | DRA Puma Parameters                | 43 |
| 5.1 | Upward and Forward Mode Adjustment | 69 |

## **LIST OF FIGURES**

## NUM TITLE

## PAGE

| 1.1  | Project Workflow                                      | 4  |
|------|-------------------------------------------------------|----|
| 2.1  | Swash Plate                                           | 8  |
| 2.2  | Rotational Movement                                   | 8  |
| 2.3  | Translational Movement                                | 8  |
| 2.4  | Airfoil System                                        | 9  |
| 2.5  | Collective and Rotor Blade Angle of Attack            | 9  |
| 2.6  | Collective Control                                    | 10 |
| 2.7  | Cyclic and Rotor Blade Angle of Attack                | 11 |
| 2.8  | Cyclic Control                                        | 12 |
| 2.9  | Helicopter Controls in Relation to the Pilot's Seat   | 12 |
| 2.10 | Tail Blade                                            | 13 |
| 2.11 | Tail Control                                          | 13 |
| 2.12 | Blade Operation                                       | 15 |
| 2.13 | Movement of Air Over an Airfoil                       | 16 |
| 2.14 | Pitch Angle of Attack                                 | 17 |
| 2.15 | Rotor Head Assembly of a 'FP' RC Helicopter           | 17 |
| 2.16 | FP Rotor Head Compared to The More Complex CP (right) | 18 |
| 2.17 | The Gyro                                              | 21 |
| 2.18 | RC Mixer Boards                                       | 22 |
| 3.1  | Helicopter System                                     | 26 |
| 3.2  | Project Methodology                                   | 28 |
| 4.1  | Typical Model Organization                            | 31 |
| 4.2  | Body Axes System                                      | 32 |



| 4.3  | Inertial (E), Local (L), And Body (B) Axes | 33 |
|------|--------------------------------------------|----|
| 4.4  | Aircraft Orientation Using Euler Angles    | 34 |
| 4.5  | Euler Angle                                | 42 |
| 4.6  | DRA Research Puma                          | 44 |
| 6.1  | V-Realm Builder software                   | 51 |
| 6.2  | MATLAB graphics                            | 52 |
| 6.3  | VRML coordinate system                     | 52 |
| 6.4  | Rotation Angles                            | 52 |
| 6.5  | Helicopter System                          | 54 |
| 6.6  | Virtual Reality Block Model                | 54 |
| 6.7  | Inside Subsystem Block Model               | 55 |
| 6.8  | Red Block (Color Block                     | 55 |
| 6.9  | Helicopter Trajectory                      | 55 |
| 6.10 | Helicopter Trajectory Color                | 56 |
| 6.11 | Visual of Virtual Reality                  | 56 |
| 6.12 | Parameter VR Sink                          | 57 |
| 6.13 | V-Realm Builder World Animation Design     | 58 |
| 6.14 | Object Library                             | 58 |
| 7.1  | Eigenvalues                                | 62 |
| 7.2  | Poles-Zero Map                             | 63 |
| 7.3  | Feedback Block Model                       | 65 |
| 7.4  | Feedback Block Model                       | 66 |
| 7.5  | Poles-Zero Map                             | 67 |
| 7.6  | Simulink Block for Open-Loop System        | 68 |
| 7.7  | Upward and Forward Mode Adjustment         | 69 |
| 7.8  | Upward Input                               | 69 |
| 7.9  | Forward Input                              | 69 |
| 7.10 | Upward Translational Output                | 70 |
| 7.11 | Upward Translational Output 3-D            | 70 |
| 7.12 | Upward Distance Output 3-D                 | 71 |
| 7.13 | Upward Rotational Output 3-D               | 71 |
| 7.14 | Forward Translational Output               | 72 |
| 7.15 | Forward Translational Output 3-D           | 72 |

| 7.16 | Forward Distance Output 3-D                               | 73 |
|------|-----------------------------------------------------------|----|
| 7.17 | Forward Rotational Output 3-D                             | 73 |
| 7.18 | Simulink Block for Closed-Loop System                     | 74 |
| 7.19 | Upward Translational Output                               | 75 |
| 7.20 | Upward Translational Output 3-D                           | 75 |
| 7.21 | Upward Distance Output 3-D                                | 76 |
| 7.22 | Upward Rotational Output 3-D                              | 76 |
| 7.23 | Forward Ttranslational Output                             | 77 |
| 7.24 | Forward Ttranslational Output 3-D                         | 77 |
| 7.25 | Forward Distance Output 3-D                               | 78 |
| 7.26 | Forward Rotational Output 3-D                             | 78 |
| 7.27 | Simulink Block for UAV System                             | 79 |
| 7.28 | UAV Input Data                                            | 79 |
| 7.29 | UAV Translational Output                                  | 80 |
| 7.30 | UAV Translational Output 3-D                              | 80 |
| 7.31 | UAV Distance Output 3-D                                   | 81 |
| 7.32 | UAV Rotational Output 3-D                                 | 81 |
| 8.1  | UAV Interfacing using RTWT                                | 85 |
| 8.2  | Stability Derivatives Longitudinal Parameter              | 90 |
| 8.3  | Stability Derivatives Lateral Parameter                   | 91 |
| 8.4  | Stability Derivatives Lateral into Longitudinal Parameter | 92 |
| 8.5  | Stability Derivatives Longitudinal into Lateral Parameter | 93 |
| 8.6  | Stability Derivatives Main Rotor Longitudinal Parameter   | 94 |
| 8.7  | Stability Derivatives Main Rotor Lateral Parameter        | 95 |
| 8.8  | Stability Derivatives Tail Rotor Parameter                | 96 |



## LIST OF ABBREVIATION

| SISO                            | - Single Input Single Output                                            |
|---------------------------------|-------------------------------------------------------------------------|
| MIMO                            | - Multi Input Multi Output                                              |
| PID                             | - Proportional-Integral-Derivative                                      |
| PD                              | - Proportional-Derivative                                               |
| LQR                             | - Linear Quadratic Regulator                                            |
| DOF                             | - Degree of Freedom                                                     |
| $M_{a}$                         | - Mass of helicopter (kg)                                               |
| X,Y,Z                           | - External aerodynamic forces in x,y,z body axes (N)                    |
| P,Q,R                           | - Angular velocity around x,y,z body axes (rad)                         |
| L,M,N                           | - External aerodynamic moment in x,y,z axes (Nm)                        |
| $	heta_0$                       | - Main rotor collective pitch angle (rad)                               |
| $\theta_{_{0T}}$                | - Tail rotor collective pitch angle (rad)                               |
| $	heta_{\scriptscriptstyle LS}$ | - Longitudinal cyclic pitch (rad)                                       |
| $	heta_{\scriptscriptstyle LC}$ | - Lateral cyclic pitch (rad)                                            |
| u,v,w                           | - Translational velocity component of helicopter along fuselage         |
|                                 | (m/s)                                                                   |
| p,q,r                           | - Angular velocity component of helicopter (rad/s)                      |
| $	heta, \phi, \psi$             | - Euler angles defining the orientation of the aircraft relative to the |
|                                 | Earth (rad)                                                             |
| $\Omega_a$                      | - Mass rotor angular velocity (rad/s)                                   |
| UAV                             | - Unmanned Aerial Vehicle                                               |
| VR                              | - Virtual Reality                                                       |

# LIST OF APPENDIXES

| NO | TITLE                     | PAGE |
|----|---------------------------|------|
| А  | M-FILES CODING            | 87   |
| A  | DRA PUMA DERIVATIVES DATA | 90   |

#### **CHAPTER 1**

#### INTRODUCTION

The first successful flight of an airplane on December 17, 1903 by the Wright brothers and the advent of the helicopter on November 13, 1907 by Paul Cornu (Helicopter History Site), man began exploring the skies. Both of these craft offer extraordinary ways to soar through the skies, yet each has its own limitations. While, the airplane can fly up to 120,000 feet and can do so flying three times faster than the speed of sound. It needs a runway about a mile long to take off and land and must maintain a forward velocity to produce lift. While the helicopter can take off without and runway and can remain stationary in a hover, it cannot fly much faster than 400 miles per hour and cannot fly much higher than 30,000 feet but can reach to the difficult area that airplane can reach. The helicopter was known to be inherently unstable, complicated and nonlinear dynamics under the significant influence of disturbances and parameter perturbations. The system has to be stabilized by using a feedback controller. The stabilizing controller may be designed by the model-based mathematical approach or by heuristic control algorithms. Due to the complexity of the helicopter dynamics, there have been efforts to apply non-model-based approaches such as fuzzy-logic control, neural network control, or linear quadratic regulator (LQR) controller [1].

#### **1.1 OBJECTIVES**

The objectives for this project are:

- i. To develop the mathematical model of this system.
- ii. To understand each of DRA Puma helicopter parameter that can be implant to helicopter model.
- To understand and calculate the EoM (equation of movement) in helicopter model and apply the EoM in state-space representation.
- iv. To design the upward flight and forward flight control then design the stable control system for this model using LQR.
- v. To demonstrate design and analysis techniques by using MATLAB software through graph and animation of the system.

#### **1.2 PROBLEM STATEMENT**

The control for a small scale helicopter has been designed using various methods. During the period of 1990s, the classical control systems such as single-input-single-output SISO proportional-derivative (PD) feedback control systems have been used extensively. Their controller parameters were usually tuned empirically [4]. This trial-and error approach to design an "acceptable" control system however is not agreeable with complex multi-input multi-output MIMO systems with sophisticated performance criteria. For more advanced multivariable control a model helicopter as a complex MIMO system, an approach that can synthesize a control algorithm to make the helicopter meet performance criteria while satisfying some physical constraints is required. More recent development in this area include the use of optimal control (Linear Quadratic Regulator) implemented on a helicopter.

### **1.3 SCOPE OF PROJECT**

The scope of this project involve of:

- i. Develop the mathematical model of hybrid control system.
- ii. Design upward flight and forward flight control system in simulation.
- iii. Apply the LQR controller to stabilize the system.
- iv. Produce the performance through graph by using MATLAB software.

#### **1.4 PROJECT METHODOLOGY**

Methodology is important part of the whole project because it shows out how the project's activity develops. For this project, there are some procedures and methods which be used to produce a set of simulation system of linear helicopter. The detail explanations about the methodology are discussed in Chapter III. The project workflow is shown in Figure 1.1



Figure 1.1 Project Workflow

🔘 Universiti Teknikal Malaysia Melaka

#### **1.6 REPORT ORGANIZATION**

This report contains eight chapters that will be explaining the detail of this project. First six chapters are introduction, literature review, project methodology, mathematical model, LQR controller and virtual reality toolbox will briefly cover the main operation and understanding of the project. Seventh and the eighth chapter are on result and discussion that show finalize result that been achieved by the simulation in MATLAB. The observation and analysis will be describe detail to show the capability of the system performance.

The first chapter is about the introduction of the project. This chapter covers about the overview of this project, project objective, project problem statement, project scope and the project methodology.

The second chapter is about the literature review of the project. The literature reviews includes some research about the theory of controlling the real helicopter and remote control helicopter (RC). This chapter also explains about the sensors that use in the helicopter. Plus this chapter give information about atmosphere and standard air data measurement.

The third chapter is about the project methodology. In this chapter the explanation of the step of the project will be clarify. The general concepts will be shown and explain in detail. The process of the project is drawn in the flowchart of the project. All the process is elaborate completely in this chapter.

The fourth chapter mainly focuses on the mathematical model. Based on the three main axis than get the orientation of the helicopter. Using the basic equation from Newton's Law and Euler's Equation in term of coordinate system and derive to get 9 Equation of Motion (EoM) to use in the control system. This chapter also include the parameter used for the helicopter control system. The DRA Research PUMA will be the reference for this project.

The fifth chapter will show the derivation of the mathematical of LQR system based on Riccarti equation to stabilize the helicopter control system. The important variable needed to manipulate the system and give the optimize value for the controller.

The sixth chapter briefly show how to use the Virtual Reality Toolbox in MATLAB. Start from the introduction of VRML than to V-Realm Builder software and finally how to create the animation and communicate with the control system.

The seventh chapter contains the preliminary result of the project. In this chapter, the simulation for open-loop and closed-loop will be design. The output graph of open-loop system will show either the system is stable or unstable. The output graph of closed-loop system will show the difference performance compared to open-loop system. This chapter also show the UAV helicopter design through the graph analysis.