ONLINE PRODUCT IDENTIFICATION SYSTEM USING ARTIFICIAL NEURAL NETWORKS

FARAHIYAH MURNI BINTI HARUN

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Computer Engineering) With Honours

Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka

April 2011

UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek

Online Product Identification System Using Artificial

Neural Networks

Sesi Pengajian

SESI 2010/2011

Saya

FARAHIYAH MURNI BINTI HARUN

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syaratsyarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- Sila tandakan (√):

SULIT*

*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA

RAHSIA RASMI 1972)

TERHAD**

**(Mengandungi maklumat terhad yang telah ditentukan oleh

organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

NO. 110, JALAN UTAMA, KG. TEBING TINGGI, 85000 SEGAMAT, JOHOR. Disahkan oleh:

(COP DAY TANDATANGAN PENYELIA)

Hang Tuah Ja

76100 Durien Tunggal,

Tarikh: 30 APRIL 2011 Tarikh: 03 MAY 2011 "I hereby declare that this report is the result of my own work except for quotes as cited in the references"

Signature

Author : FARAHIYAH MURNI BINTI HARUN

Date : 30 APRIL 2011

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering) With Honours."

Signature

Supervisor's Name

: EN. KHAIRUL AZHA BIN A.AZIZ

Date

: 03 MAY 2011

Special dedication to my loving family, friends and kind hearted supervisor Mr. Khairul Azha bin A.Aziz.

ACKNOWLEDGEMENT

I am very grateful to Allah S.W.T because finally I completed my final year project. This final year project has given me a lot of experienced gained throughout the process of completing it. I was having many difficulties to complete this project but I managed to pull it through with all the courage and hard work. This could not be done without certain people who helped me in completing this project.

Firstly, I would like to thank En. Khairul Azha Bin A.Aziz who is supervisor whom has given me much guidance to complete this project. He has inspired me to think out of the box and give me ways to look something in a different way. He also gave me a lot of guidance, knowledge, moral support and has been patiently monitoring my progress.

I also would like to give my special thanks to my parents who gave me their unfailing encouragement and support in financial also morality for over the years. I would not achieve a great success without them. My special appreciation and thanks to all my friends for their invaluable assistances towards this project thesis.

Once again, I would like to give a million thanks to all.

ABSTRACT

This project was discussed about online product identification system using artificial neural networks which targeting to be operated using webcam as a means of capturing images of object and neural networks system is used to analyze and classifications object. This application will involves computer and software that based on neural system and take action in monitoring and run isolation process by consider that object staying in real time situation. The big part of the project will be the programming by using MATLAB. This system uses radial basis function neural network to identify, recognize and classify the image. The webcam acquired of an object or model and MATLAB converts that image into respective grayscale and analyzes the image using radial basis function neural network. The final outcome of this system recognition reached values up to 100% for the product classifies and also the overall computing time is comfortably short.

ABSTRAK

Projek ini membincangkan tentang Sistem Pengenalpastian Produk Dalam Talian Menggunakan Jaringan Saraf Buatan yang menyasarkan untuk beroperasi menggunakan kamera web sebagai alat menangkap gambar objek dan sistem jaringan saraf buatan digunakan untuk menganalisa dan pengkelasan objek. Aplikasi ini akan melibatkan komputer dan perisian yang berdasarkan sistem saraf dan bertindak memantau dan mengendalikan proses pengasingan dengan menganggap objek tersebut berada dalam situasi semasa. Bahagian terbesar dari projek ini adalah bahagian pengaturcaraan dengan menggunakan MATLAB. Sistem ini menggunakan rangkaian Fungsi Asas Jejarian Sarat untuk mengenalpasti, mengenali dan mengklasifikasi gambar. Kamera web yang digunakan akan mengambil gambar objek yang kemudiannnya ditukarkan kepada gambar hitam putih dan kemudiannya melakukan pemprosesan gambar dengan menggunakan asas rangkaian fungsi radial saraf. Keputusan akhir dari sistem ini ialah kebolehan pengecaman objek mengikut klasifikasi mencapai 100% dan penggunaan masa untuk keseluruhan proses adalah singkat.

CONTENTS

CHAPTER	CONTENT		PAGE
	PRO	DJECT TITLE	i
	VERIFICATION FORM STATUS REPORT		ii
	DEC	CLARATION	iii
	DED	DICATION	v
	ACF	CNOWLEDGEMENT	vi
	ABS	TRACT	vii
	ABS	TRAK	viii
	CON	NTENTS	ix
	LIST	T OF TABLES	xiii
	LIST OF FIGURES		xiv
	LIST	Γ OF APPENDICES	xvii
I	INT	RODUCTION	
	1.1	Project Background	1
	1.2	Objectives of Projects	3
	1.3	Problem Statements	3
	1.4	Scope of project	4
	1.5	Methodology	5
	1.6	Report Structure	6
II	LIT	ERATURE REVIEW	
	2.1	Introduction	7
	2.2	Machine Vision and Computer Vision	8
		2.2.1 Machine Vision (MV)	8

		2.2.2	Computer vision (CV)	0
		2.2.3	Pre-processing in Computer Version	9
	2.3	MATL	AB Software	9
		2.3.1	The advantages of Matlab	9
	2.4	Image	Processing	10
		2.4.1	Segmentation	11
		2.4.2	Thresholding	11
		2.4.3	Detecting Edge	13
		2.4.4	Median Filtering	14
		2.4.5	Structuring Elements	15
	2.5	Neural	Network Method	16
		2.5.1	Neural Network	16
		2.5.2	Advantages and disadvantages of neural network	17
		2.5.3	Radial Basis Function	17
		2.5.4	Comparison RBF with the Multiple Layer	
			Perceptron(MLP)	18
	2.6	Sorting	g Methods	19
		2.6.1	Manual Sorting System	19
		2.6.2	Automatic Sorting System	20
		2.6.3	Comparison between manual and automatic sorting	21
			methods	
			p p	
III	METH	IODOI	LOGY	
	3.1	Introdu	action	22
	3.2	System	Overview	22
	3.3	Method	d of Image Processing	23
		3.3.1	Pre-Processing	24
		3.3.2	Neural Network Classifier	25
	3.4	Softwa	re Development	25
		3.4.1	Read Image from Webcam	26
		3.4.2	Display Image in Matlab	27
		3.4.3	Grey-Level segmentation (Thresholding)	28

	z			xi
		3.4.4	Edge Detection	28
		3.4.5	Neural Network Training	29
	3.5	Projec	et Planning	30
IV	RES	ULT AN	ND DISCUSSION	
	4.1	Introd	uction	39
	4.2	Data A	Analysis	40
	4.3	Result	t	40
		4.3.1	Pre-Processing	40
			4.3.1.1 Read Image from Webcam	40
			4.3.1.2 Thresholding (Segmentation)	43
			4.3.1.3 Edge Detection	43
			4.3.1.4 Filling Holes to Image	45
		4.3.2	Train Neural Network	46
		4.3.3	Step-by-step result of the Radial Basis Function	47
			4.3.3.1 Original Image	47
			4.3.3.2 Threshold Image	48
			4.3.3.3 Filtering Image	49
			4.3.3.4 Edge Image	50
			4.3.3.5 Dilation Image	51
			4.3.3.6 Image after Filling Holes	52
		4.3.4	Result of Neural Network Classification	52
		4.3.5	Spread	53
		4.3.6	MATLAB GUI (Graphical User Interface)	54
		4.3.7	Prototype	55
	4.4	Discus	ssion	56

V CONCLUSION

5.1	Conclusion	37
5.2	Recommendation	55

	xi
REFERENCES	59
APPENDIX	6

LIST OF TABLES

NO	TITLE	PAGE
1.1	Comparison between manual and automatic sorting methods	21
2.1	Result of Neural Network Classification	53
2.2	Identify the ideal spread use for training	53

LIST OF FIGURES

NO	TITLE	PAGE
1.1	Overview of project	2
1.2	Flowchart of the project	5
2.1	Original intensity image	12
2.2	Binary image	13
2.3	The edge of rice image	14
2.4	Noisy image and after filtering process	15
2.5	Neural Network Layers	16
2.6	A typical Multiple Layer Perceptron (MLP) architecture	18
2.7	Manual sorting system	19
2.8	Automated sorting system	20
3.1	Project Design Methodology	23
3.2	Block Diagram for Image Pre-Processing	23
3.3	Pre-Processing image	24
3.4	Block diagram for neural network (RBF)	25
3.5	Radial Basis Function Algorithm	26
3.6	Median filtering image	28
3.7	Edge image	29
3.8	Neural network	30

3.9	Flowchart of the project	33
3.10	Flowchart of the system operation	35
3.11	Flowchart of the training process	37
3.12	Project Planning	38
4.1	Command to call webcam from Matlab	41
4.2	Webcam identifier number and supported video format	41
4.3	Command use to display video and snap image	42
4.4	Command to read and show the image	42
4.5	Original Image	42
4.6	Command to convert RGB to binary image	43
4.7	Binary Image	43
4.8	Command for filter image	44
4.9	Filtering Image	44
4.10	Command for edge processing (canny method)	44
4.11	Edge Image	45
4.12	Command for filling image	45
4.13	Filling Holes Image	46
4.14	Command use for train neural network	46
4.15	Command use for test neural network	47
4.16	Original image of product	47
4.17	Threshold image of product	48
4.18	Filtering image of product	49
4.19	Edge image of product	50

4.20	Dilation image of product	51
4.21	Image of product after filling holes	52
4.22	MATLAB GUI	54
4.23	Type of products	55
4.24	Side view of prototype	55
4 25	Architecture of prototype	55

LIST OF APPENDIX

NO	TITLE	PAGE
1	APPENDIX A	61
2	APPENDIX B	63
3	APPENDIX C	67

CHAPTER 1

INTRODUCTION

1.1 **Project Background**

Online product identification system using artificial neural networks is a project to develop an application system that can identify products in real time situation. Webcam will be connected to computer for image acquisition while process such as image processing and product identification will be done using MATLAB. Radial basis function neural network will be used for identification process. This project is targeting to be operated using webcam as a tool to acquired image and neural networks system to analyze and classified the objects.

This application will involves computer and software that based on neural system and take action in monitoring and run isolation process by consider that object staying in real time situation. This system uses radial basis function neural network to identify, recognize and classify the image. The webcam acquired of an object or model and MATLAB converts that image into respective grayscale and analyzes the image using radial basis function neural networks. The final outcome of this system recognition

reached values up to 100% for the product classifies and also the overall computing time is comfortably short.

The webcam will be used to acquire image of an object in real time situation. It will capture the models and send the data into based system. Image pre-processing will run in system (MATLAB) which the image will be converting to grayscale image from a color image before filtering process (thresholding and edge detection) has been done. Then the neural network was applied in recognition process by define the models based on classification. Due to this process, the output image from image pre-processing will be input image to neural network and this input will be compare with the train data that already done. The result will be analyzed and the product will be separated based on image detection.

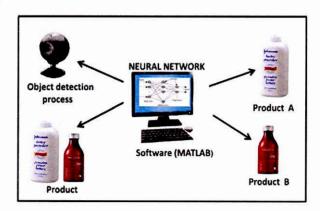


Figure 1.1: Overview of project

MATLAB is use as the platform of choice for implementation of this project because it is familiar software in most institution. MATLAB is a high-level language and interactive environment that enables to perform computationally intensive tasks faster than with traditional programming languages such as C, CH, and FORTRAN. MATLAB has excellent facilities for numerical computation and visualization, and there are many useful toolboxes (e.g. for image processing, statistics, optimization, neural networks).

1.2 Objectives of Project

The objective of this project is to develop application system that can identify products in real time situation. In real time and using a neural network, it can identify classification criteria such as shape, size, and separate the object based on classification. Webcam will be connected to computer for image acquisition while process such image processing and product identification will be done using MATLAB. Radial basis function neural network will be used for identification process. Besides that, this project also aimed to meet the following objectives:

- a) Design a system which can detect two objects and separate the object based on classification.
- b) Apply MATLAB programming for shape classification.
- c) Recognize the input object based on classification.
- d) Generate data analysis, exploration and visualization on shape recognition and classification.
- e) Develop a sorting based system using MATLAB software.
- f) Study and do a research in the field of image processing for sorting system.

1.3 Problem Statements

The ability to classify object based on color or visual appearance creates a quality control limitation in many manufacturing sectors, including the sorting of object such bottle, plastic and boxes. When sorting is performed manually, it is subjective and prone to error. Here come up with automate the task, Online Product Identification System Using Artificial Neural Networks, a develop technology that company says can reproduce human behavior in object classification tasks and produce proper time consuming for sorting process. In real time and using a neural network, it can identify classification criteria such as shape, size, and separate the object based on classification.

Scope of project 1.4

All projects have their own scope and limitation as a guideline throughout the completion of the project. This project covers design software which is MATLAB program to interface hardware computer in develop a system that can identify, sort and separate product. Then, construct the program to make sure that the program has error or not. This project aimed to apply MATLAB programming for shape and gray scale classification. It's also use radial basis function neural network as identification process. Other aspects such as the marketing of the system will not be covered in this project.

1.5 Methodology

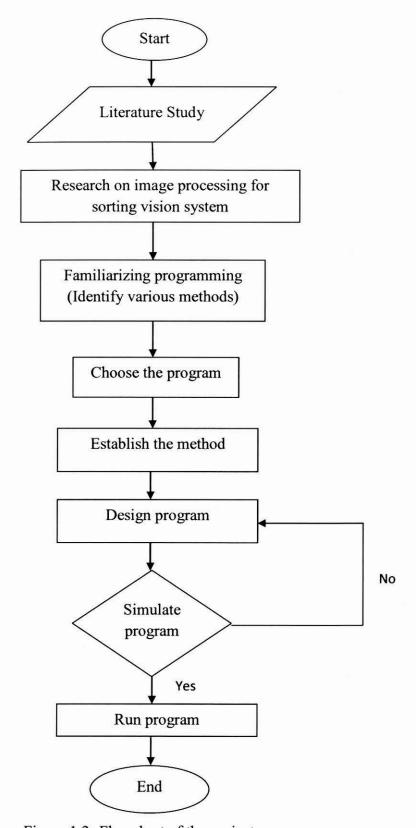


Figure 1.2: Flowchart of the project

Report Structure 1.6

This report contains of 5 chapters that explain detail about this project. The first chapter is about introduction of project where contain project background, objectives, problem statements, scope of project, and methodology. Methodology will show the flowchart of the project.

The second chapter is literature review about image processing, MATLAB software, neural network, and sorting method. This chapter discusses general subject or article that related to the project.

Third chapter is project methodologies which give details about method used to solve the problem to complete the project. These parts discuss of system overview, method of image processing, software development, and project planning.

The fourth chapter is about result and discussion of the project where finding and analysis throughout the research and project development from this project has being explained and last but not least is chapter five consist conclusion and recommendation. The overall conclusion of this project is showed.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

A literature review is a body of text that aims to review the critical points of current knowledge including substantive findings as well as theoretical and methodological contributions to a particular topic. This chapter will explain and discuss the sources and articles that are related to the project. It consist of the information about the machine vision and computer vision, the theory of the MATLAB software, image processing, neural network and parameters that is used in the project. From literature review there will be an analysis concerning the advantages and disadvantages for neural network and sorting system method in this project.