I / we admit that have read this work and in my opinion / we this work was adequate from the aspect scope and quality to the meaning Bachelor of Mechanical Engineering (Design & Innovation) Degree Programme

Signature	:
Supervisor Name 1	:
Date	:

Signature	:
Supervisor Name 2	:
Date	:

DESIGN AND IMPROVEMENT OF HYDRAULIC SYSTEM FOR FIRE FIGHTING MACHINE

SEE THIONG ZHOU

This report is submitted as partial requirement for the completion of the Bachelor of Mechanical Engineering (Design & Innovation) Degree Program

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2010

PENGAKUAN

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap-tiap satunya saya telah jelaskan sumbernya"

Tandatangan:Nama Penulis: See Thiong ZhouTarikh:

DECLARATION

"I hereby, declare this thesis is result of my own research except as cited in the references"

Signature:Author Name: See Thiong ZhouDate:

DEDICATION

To My Beloved Family

AKNOWLEDGEMENT

First and foremost, I wish to extend my heartfelt thanks to Mr. Mohd Rizal Alkahari as the final year project supervisor who has gracefully offered his time, attention, experience and guidance throughout the completion of the investigation thus far. I would also like to thanks to the university library for providing lots of sources which assistant to complete the report. Special thank to Mr. CK Tan from WINTECH Advance Engineering Sdn. Bhd. and Mr. Lawrence Heng from Immco Sdn. Bhd. for their help, advice, and recommendation throughout the completion of my project. I would like to thanks to Yap Pei Yong for assist and teach me to use FluidSIM 3.6 Festo software to simulate the hydraulic circuit.

I would like to thank each and every individual who have either directly or indirectly helped me throughout the efforts of this report be it in the form of encouragement, advice or kind reminders. Finally kudos goes out to family and parents who endured this long process which gave me love and support all the way.

ABSTRAK

Projek ini adalah mereka bentuk satu sistem hidraulik baru bagi mesin pemadam api. Tujuan mereka bentuk sistem hidraulik ialah untuk menambah satu penyenduk pada mesin pemadam api. Penyenduk itu hendaklah berfungsi untuk menggerakkan halangan dan rintangan semasa memadam api. Selain itu penyuduk itu juga berfungsi untuk membawa peralatan dan pelengkapan pemadam api ke tempat kejadian kebakaran dan juga membawa mangsa keluar dari tempat kejadian. Teknologi pemadam api yang sedia ada di pasaran, mesin pemadam api yang sedia ada di pasaran, dan pengetahuan- pengetahuan tentang sistem hidraulik yang akan digunakan dalam pelaksanaan projek ini dipelajari. Reka bentuk konsep akan menjelaskan proses untuk meraka bentuk sistem hidraulik. Isi-isinya mangandungi spesifikasi reka bentuk kejuruteraan, carta tata bentuk, konsep-konsep reka bentuk yang dijanakan, penilaian konsep, dan konsep yang terbaik. Lukisan CAD dibuat dengan menggunakan CATIA. Fungsi dan reka bentuk sistem penyeduk and setiap komponen dari sistem penyeduk akan diterangkan dengan terperinci. Selain itu, pengiraan untuk memilih hidraulik cilinder yang betul dan tepat juga diterangkan. Seterusnya, analisasi terhadap sistem penyeduk akan dilakukan dengan menggunakan SolidWork 2009 dan simulasi litar hidraulik sistem juga dijalankan dengan menggunakan FluidSim 3,6 Festo. Akhir sekali, pengangkaan untuk setiap komponen, pembahagian kluster, EBOM, dan produk kos akan diterangkan dalam tajuk ini.

ABSTRACT

The project is on design of a new hydraulic system for the fire fighting machine. The purpose of the hydraulic system is to design a shovel system attach to the fire fighting machine. The function of the shovel system is to clear the obstacles when the machine operates in the fire scene. The other functions of the shovel are to carry the fire fighting equipments to the fire scene or carry victim from the fire scene. The current existing fire fighting technologies, the current existing fire fighting machine, and the hydraulic system were studied. Firstly, the conceptual design will describes the design process of the conceptual design of the shovel. The contents include of product design specification, morphology chart, the concept designs generated, concept evaluation, and the final concept. The conceptual design is transfer to CAD drawing by using CATIA CAD software. The function and design of the shovel and each of the components of the shovel system will be described in detail. Besides, calculations on how to select the proper hydraulic cylinder also stated. Then the shovel system will be analysed using SolidWork 2009 and the hydraulic circuit for new hydraulic system is being simulated using FluidSim 3.6 Festo. Finally, the numbering part to each of the part, division of the shovel system to separate cluster, engineering bill of material (EBOM), and product costing will be described in detail.

LIST OF CONTENTS

CHAPTER	ТОР	IC	PAGE
	PEN	GAKUAN	ii
	DEC	LARATION	iii
	DED	ICATION	iv
	AKN	IOWLEDGEMENT	V
	ABS'	TRAK	vi
	ABS	TRACT	vii
	LIST	F OF CONTENTS	viii
	LIST	Г OF TABLES	xii
	LIST	FOF FIGRUES	xiii
	LIST	F OF SYMBOL	xvii
	LIST	FOF ABBREVIATIONS	xviii
	LIST	Γ OF APPENDIX A	xix
	LIST	LIST OF APPENDIX B	
	LIST	Γ OF APPENDIX C	xxi
CHAPTER I	INTI	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	2
	1.3	Objectives of the Project	3
	1.4	Scope of the Project	3

CHAPTER II	CRATURE REVIEW	4		
	2.1	Study of Current Fire Fighting Technologies	4	
	2.2	Fire Fighting Machine and Robot	6	
	2.3	Product Review	7	
	2.4	Product Comparison	25	
	2.5	Result of Fire Fighting Machine Comparison	26	
	2.6	Basic of Hydraulic	27	
	2.7	History of Fluid Power	27	
	2.8	Basic System of Hydraulic	28	
		2.8.1 Advantages of Hydraulic System	29	
		2.8.2 Disadvantages of Hydraulic System	30	
	2.9	Operation of Hydraulic Components	31	
	2.10	Basic Concept of Hydraulic Cylinder	36	
	2.11	Basic Concept of a Hydraulic Motor	38	
CHAPTER III	MET	ETHODOLOGY		
	3.1	Methodology of the Project	40	
		3.1.2 Literature Review	43	
		3.1.3 Hydraulic System	43	
		3.1.4 Reverse Engineering on Current	43	
		Fire Fighting Machine		
		3.1.5 Design and Develop Shovel	44	
		3.1.6 Product Design Specification	44	
		3.1.7 Morphology Chart	44	
		3.1.8 Concept Design	44	
		3.1.9 Concept Evaluation	45	
	3.2	Configuration and Parametric Design	45	
	3.3	Detail Design	45	
	3.4	Hydraulic System Design	46	
CHAPTER IV	CON	CEPTUAL DESIGN	48	
	4.1	Product Design Specification	48	
	4.2	Morphology Chart	49	
	4.3	Concept Design	51	

	4.3.1	Concept Design 1	51
	4.3.2	Concept Design 2	52
	4.3.3	Concept Design 3	52
	4.3.4	Concept Design 4	53
	4.3.5	Concept Design 5	54
	4.3.6	Concept Design 6	54
	4.3.7	Concept Design 7	55
	4.3.8	Concept Design 8	56
4.4	Concept Evaluation		57
4.5	Final Concept		59

CHAPTER V CONFIGURATION DESIGN AND PARAMETRIC

DESIGN

60

5.1	Config	guration Design for Shovel Assembly	60
5.2	Configuration Design for Shovel		
5.3	Config	guration Design for Shovel Holder	62
5.4	Config	guration Design for Shovel Arm	63
5.5	Config	guration Design for Connector Rod	64
5.6	Config	guration Design for Center Connector	64
5.7	Config	guration Design for Body Connector	65
5.8	Weigh	nt Calculation for Shovel Assembly	65
	5.8.1	Shovel Weight Calculation	66
	5.8.2	Shovel Holder Weight (6 Pieces)	66
		Calculation	
	5.8.3	Shovel Arm Weight (2 Pieces)	67
		Calculation	
	5.8.4	Center Rod Weight Calculation	68
	5.8.5	Center Connector Weight Calculation	69
5.9	Config	guration Design for Hydraulic Cylinder	70
	5.9.1	Force Required For Hydraulic Cylinder 1	71
	5.9.1.	1 Hydraulic Cylinder 1 Selection	75
		(Using Table)	
	5.9.1.2	2 Hydraulic Cylinder 1 Selection	76
		(Using Manual Calculation)	

		5.9.1.3 Determination of Stroke of Hydraulic	76
		Cylinder 1	
		5.9.2 Force Required For Hydraulic Cylinder 2	77
		5.9.2.1 Hydraulic Cylinder 1 Selection	80
		(Using Table)	
		5.9.2.2 Hydraulic Cylinder 2 Selection	81
		(Using Manual Calculation)	
		5.9.2.3 Determination of Stroke of Hydraulic	81
		Cylinder 2	
		5.9.3 Hydraulic Cylinder Velocity and	82
		Power calculation	
	5.10	Hydraulic Pump Selection	83
	5.11	Hydraulic Valve Selection	84
CHAPTER VI	ANA	LYSIS	86
	6.1	Shovel Assembly Structure Analysis	86
	6.2	Hydraulic Circuit Analysis/ Simulation	90
	6.2.1	Hydraulic Circuit Analysis/ Simulation	90
		On New Hydraulic Circuit	
	6.2.2	Hydraulic Circuit Analysis/ Simulation	95
		On Existing Hydraulic Circuit	
	6.2.3	Hydraulic Circuit Analysis/ Simulation	99
		On Integrated Hydraulic Circuit	
CHAPTER VII	DETA	AIL DESIGN	103
	7.1	Numbering Part	103
	7.2	Engineering Bill of Material (EBOM)	106
	7.3	Product Costing	108
CHAPTER VIII	CON	CLUSION AND RECOMMENDATION	109
	8.1	Conclusion	109
	8.2	Recommendation	110
	REFI	ERENCE	111
	BIBL	IOGRAPHY	114

LIST OF TABLES

NO. TITLE PAGE 9 2.1 Detail technical data and scope of supply of LUF60 2.2 The electrical equipment data and miscellaneous of the LUF60 10 2.3 Table of FIREROB Technical Data 11 2.4 Detail Specification of FFR-1 13 2.5 Detail Specification of Large Version FIREMOTE 17 2.6 Detail Specification of Small Version FIREMOTE 19 2.7 Product Comparison Table 25 4.1 Product Characteristic Table 48 4.2 49 Functional Design Table 4.3 Design Constrain Table 49 50 4.4 Morphology Chart 4.5 Table of Selection Matrix 60 7.1 Numbering Part 104 7.2 Cluster and Part Number of Shovel Assembly 105 7.3 EBOM of Shovel Assembly 107 7.4 Cost Estimated for Shovel Assembly 108

LIST OF FIGURES

NO.

TITLE

7 2.1 Mobile Fire fighting Supporting Machine LUF60 2.2 Fire Test Scene at Austrian Tunnel 8 2.3 Service Robot FIREROB 10 2.4 FIREROB equipped with high-pressure water mist extinguishers 11 2.5 FFR-1 Fire Fighting and Rescue Wireless Robot 12 2.6 Large Version FIREMOTE 14 2.7 Large Version FIREMOTE In Action With Double Outlet 16 2.8 Small Version FIREMOTE in fire fighting action 18 2.9 ARMTEC's SACI Fire Fighting Robot 20 2.10 21 SACI Fire Fighting Robot In Action 2.11 21 JMX-LT50 Fire Fighting Robot 2.12 JMX LT50 in Action 22 2.13 23 Anna Konda – Fire Fighting Robotic Snake 2.14 Anna Konda (Prototype) In Action 24 2.15 Basic Hydraulic System 28 2.16 29 Sample of Basic Hydraulic Principle 2.17 Classification of principle types of hydraulic pumps 33 2.18 Figures of each types of cylinder 34 2.19 Hydraulic cylinder being extended a distance x against a force F37 3.1 Flow chart of project methodology 42 3.2 Flow chart of hydraulic system design 46 4.1 51 Concept Design 1 4.2 52 **Concept Design 2** 4.3 52 **Concept Design 3** 4.4 **Concept Design 4** 53

PAGE

4.5	Concept Design 5	54
4.6	Concept Design 6	55
4.7	Concept Design 7	55
4.8	Concept Design 8	56
4.9	Best Concept	59
5.1	The Isometric View of Shovel Assembly	61
5.2	Exploded View of Shovel Assembly	61
5.3	Design of Shovel	62
5.4	Design of Shovel Holder	63
5.5	Design of Shovel Arm	63
5.6	Design of Connector Rod	64
5.7	Design of Center Connecter	64
5.8	Design of Body Connector	65
5.9	Drawing and Dimension of Shovel	66
5.10	Drawing and Dimension of Shovel Holder	66
5.11	Drawing and Dimension of Shovel Arm	67
5.12	Drawing and Dimension of Connector Rod	68
5.13	Drawing and Dimension of Center Connector	69
5.14	Side View of Shovel Assembly with Dimension Labelled	70
5.15	The Full Body Diagram (FBD) for Shovel Assembly	71
5.16	Pressure/ Force Table for Hydraulic Cylinder 1 Size Selection	75
5.17	Stroke Position for Hydraulic Cylinder 1	77
5.18	Pressure/ Force Table for Hydraulic Cylinder 2 Size Selection	80
5.19	Stroke Position for Hydraulic Cylinder 2	82
5.20	Operation of solenoid to shift spool of valve	84
5.21	Actual solenoid-actuated directional control valve	85
5.22	Symbol of the solenoid-actuated directional control valve	85
6.1	Result of Stress Analysis on Shovel Assembly	87
6.2	Up-close View to Front Shovel	87
6.3	Up-close View to Connector Rod and Center Connector	88
6.4	Up-close View to Shovel Arm	88
6.5	Table of Material Properties from SolidWorks 2009	89
6.6	Displacement Analysis of Shovel Assembly	90
6.7	Side view of Shovel Assembly	91

6.8	Hydraulic Cylinder 1 and 2 in retract position	91
6.9	Hydraulic Cylinder 1 in middle stroke and Hydraulic	92
	Cylinder 2 in minimum stroke	
6.10	Hydraulic Cylinder 1 in maximum stroke and Hydraulic	92
	Cylinder 2 in minimum stroke	
6.11	Hydraulic Cylinder 1 in maximum stroke and Hydraulic	93
	Cylinder 2 in middle stroke	
6.12	Hydraulic Cylinder 1 in maximum stroke and Hydraulic	93
	Cylinder 2 in maximum stroke	
6.13	Hydraulic Cylinder 1 in medium stroke and Hydraulic	94
	Cylinder 2 in maximum stroke	
6.14	Hydraulic Cylinder 1 in minimum stroke and Hydraulic	94
	Cylinder 2 in maximum stroke	
6.15	UTeM Fire Fighting Machine	95
6.16	Hydraulic Cylinder A, B, and C in retract position	95
6.17	Hydraulic Cylinder A in maximum stroke and Hydraulic	96
	Cylinder B and C in minimum stroke	
6.18	Hydraulic Cylinder A and B in maximum stroke,	96
	Hydraulic Cylinder C in minimum stroke	
6.19	Hydraulic Cylinder A, B, and C in maximum stroke	97
6.20	Hydraulic Cylinder C in minimum stroke and Hydraulic	97
	Cylinder A and B in maximum stroke	
6.21	Hydraulic Cylinder B and C in minimum stroke and	98
	Hydraulic Cylinder A in maximum stroke	
6.22	Hydraulic Cylinder A, B and C in minimum stroke	98
6.23	Hydraulic Cylinder A, B, C, 1, and 2 in retract position	99
6.24	Hydraulic Cylinder A in maximum stroke and Hydraulic	99
	Cylinder B, C, 1, and 2 in minimum strokes	
6.25	Hydraulic Cylinder A and B in maximum stroke,	102
	Hydraulic Cylinder C, 1, and 2 in minimum strokes	
6.26	Hydraulic Cylinder A, B, C in maximum	100
	stroke, Hydraulic Cylinder 1 and 2 in minimum stroke	
6.27	Hydraulic Cylinder A, B, C, and 1 in maximum stroke,	101
	Hydraulic Cylinder 2 in minimum stroke	

6.28	Hydraulic Cylinder A, B, and C in maximum	101
	stroke, Hydraulic Cylinder 1 and 2 in minimum	
	stroke	

LIST OF SYMBOLS

Х	=	distance
V	=	volume
А	=	area
F	=	force
А	=	area
P hyd	=	hydraulic power
Р	=	pressure
Ν	=	rotational speed
Q	=	flow
Т	=	torque
ΔP	=	pressure drop across motor
\mathbf{V}_{m}	=	displacement

xvii

LIST OF ABBREVIATIONS

CAD	=	Computer-Aided Design
PDS	=	Product Design Specification
EBOM	=	Engineering Bill of Material

LIST OF APPENDIX A

NO. TITLE PAGE 1 Table of Safety Factor 116 Table of Material Properties 2 117 3 118 Table of Yield Strength of Material Types of Cylinder Mounting 4 119 5 Table of Mounting Dimension for 210 Bar 120 Standard Cylinder Mounting: MP3 Male Clevis 6 Table of Pressure / Force for Hydraulic 121 Cylinder Size Selection 7 Solenoid Valve Data 122

LIST OF APPENDIX B

NO.	TITLE	PAGE
1	Drafting of Shovel	125
2	Drafting of Shovel Holder	126
3	Drafting of Shovel Arm	127
4	Drafting of Connector Rod	128
5	Drafting of Center Connector	129
6	Drafting of Body Connector	130
7	Drafting of Hydraulic Cylinder 1	131
8	Drafting of Hydraulic Cylinder 1	132
9	Drafting of Shovel Assembly	133

LIST OF APPENDIX C

NO.	TITLE	PAGE
1	Drafting of Fire Fighting Machine	135
2	Drafting of Bearing	136
3	Drafting of Connector Strut 1	137
4	Drafting of Connector Strut 2	138
5	Drafting of Connector Strut 3	139
6	Drafting of Hydraulic Cylinder A	140
7	Drafting of Hydraulic Cylinder B	141
8	Drafting of Nozzle Base	142
9	Drafting of Nozzle Strut 1	143
10	Drafting of Nozzle Strut 2	144
11	Drafting of Nozzle Strut 3	145
12	Drafting of Nozzle Strut 4	146
13	Drafting of Nozzle Strut 5	147
14	Drafting of Nozzle Strut 6	148
15	Drafting of Nozzle Strut 7	149
16	Chassis Cover 1	150
17	Chassis Cover 2	151
18	Chassis Cover 3	152
19	Chassis Cover 4	153
20	Chassis Cover 5	154
21	Chassis Cover 6	155
22	Chassis Cover 7	156
23	Shovel Assemble to Fire Fighting Machine	157

xxi

CHAPTER I

INTRODUCTION

This chapter explains the background of the project, problem statement, objective, and scope of this project.

1.1 Background

Firefighters are rescuers to put out hazardous fires that threaten civilian populations and property, to rescue people from collapsed and burning buildings, car accidents, and other such situation. Collapsing buildings, explosions and poisonous fumes all pose a serious threat to the lives and limbs of fire crews. Currently, there are many technologies that assist firefighters to fight against fire such as fire fighting vehicle, fire extinguisher, mobile water supply, and fire fighting machine.

The gap between fire fighting and machines has finally bridge by technology. Fire fighting machine and fire fighting robot allow for a more efficient and effective method of firefighting. Robots and machines designed to extinguish a fire, before it rages out of control, could work with firefighters greatly reducing the risk of injury to victims. In the other words, using machine or robot to put out fires will eliminate the risk of injury or death of the fire fighter.

Fire fighting machine is a fuel or electric powered machine controlled from a panel or remote-controller that can be situated outside the danger area with no line-

of-sight necessary. The fire fighting machine usually equipped with variable pattern fire-fighting nozzle, cameras, and local cooling system, contained in a stainless steel insulated body. The control of the leveling, declining, elevating, and rotating of the fire monitor can adjust the spraying point of fall of the fire extinguishing media. The hydraulic system is usually used is the control system of the fire monitor.

The use of hydraulics as a means of power transmission in industries has been a significant increase in the past. Hydraulic systems are now extensively used in machine tools, material handling devices, transport and other mobile equipment, in aviation systems, etc. Hydraulic system is a power transmission system using oil to carry the power. All systems require an input and an output. The output force is almost always multiplied in the process. Hydraulics is mechanically safe, compact, and is adaptable to other forms of power and can be easily controlled. The basic components of the hydraulic system are pump, strainer, oil reservoir, filter, pressure gauge, pressure relief valve, direction control valve, actuator (cylinder or motor), etc.

1.2 Problem Statement

The current fire fighting machine developed by University Teknikal Malaysia Melaka (UTeM) is powered by battery and controlled by remote-controller. The fire fighting machine is mounted with a hydraulic control arm with a nozzle which is connected to the water supply. The main function of this fire fighting machine is to reach the fire source (by using remote-control) in road, basements or other enclosed building compartments, especially factories. The fire fighting machine will reduce the high ambient temperature and the fire intensity or even extinguish the fire by using water spray, thus allow fire fighting and rescue teams to approach safely. With the control of hydraulic system, the nozzle can be adjusted to the spraying point of the water stream at different angle.

There are some weaknesses present in the current UTeM's fire fighting machine such as mobility of this machine is narrow. This machine cannot go through a path if the path is being blocked by obstacles.

