raf

TJ230 .A27 2009.

0000066911

Development of automated satay assembly mechanism using gear design technique / Ab Rahman Saeman.

DEVELOPMENT OF AUTOMATED SATAY ASSEMBLY MECHANISM USING GEAR DESIGN TECHNIQUE

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Robotic and Automation) with Honours

by

AB RAHMAN BIN SAEMAN

FACULTY OF MANUFACTURING ENGINEERING 2009

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Development of Automated Satay Assembly Mechanism using Gear **Design Technique**

SESI PENGAJIAN: 2008/09 Semester 2

Saya AB RAHMAN SAEMAN

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (√)

SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	1/
/	Disahkan oleh:
- Joseph .	ISMAIL BIN ABU SHAH
Alamat Tetap:	Cop Rasmi: Pensyarah
Jln Paya Kelubi 1,	Fakulti Kej⊎ruteraan Pembuatan Unive ⊣⊄ Teknikal Malaysia Melaka
Kg. Ayer Molek, Kuala Sg. B.	aru
78200 Alor Gajah, Melaka	
Tarikh:	Tarikh: 25 85
Hilan I	,

^{**} Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this thesis entitle "Development of Automated Satay Assembly Mechanism using Gear Design Technique" is the result of my own research except as cited in references.

Signature :

Author's Name : AB RAHMAN BIN SAEMAN

Date : $\frac{22}{5}$ / $\frac{5}{6}$

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation) with Honours. The member of the supervisory committee is as follow:

Fakulti Keluruterlaan Pembuatan Unive sa Persikat Malaysia Melaka

(MR ISMAIL BIN ABU SHAH)

Main supervisor

Faculty of Manufacturing Engineering

ABSTRACT

The title of this project is Development of Automated Satay Assembly Mechanism using Gear Design Technique. The problems of manually Satay skewering process are tedious, unhygienic and lower mass production in industrial. The aims of the project are to develop automated satay skewering machine and analyze gear design mechanism that use for skewering meat. Therefore the gear design technique is introduced for optimum satay skewering process to solve such problems. Beside that, the suitable technique for skewering the meat also determined. In literature review stage, specific work is doing in order to collecting the information for this project. Through this literature, data has been collected from various types of books, journal and internet website. The detail discussion of the Satay meat, skewering process and gear design technique are describing in this stage. As analysis section, MDesign, and working model tool is implemented to evaluate and simulate the gear mechanism. Using the method unambiguous calculation of the gear design can be solved. At the end the result through this analysis will influence the gear design for the development.

ABSTRAK

Projek ini merupakan suatu projek yang berkisarkan tentang pemprosesan makanan, tajuknya ialah Merekabentuk mesin automatik mencucuk satay dengan menggunakan teknik rekaan gear. Masalah utama bagi projek ini ialah mengenai proses mencucuk satay yang dilakukan sekarang. Dimana, kajian sebelum ini menyatakan proses mencucuk satay dengan mengunakan tangan adalah sangat lambat dan tidak dapat memenuhi permintaan ramai pelanggan. Oleh sebab itu, projek ini dilaksanakan untuk merekacipta mesin mencucuk satay secara automatik dan menganalisa rekaan gear yang digunakan untuk mencucuk satay. Konklusinya gear digunakan untuk mengatasi masalah yang berlaku ini. Pada peringkat kajian ilmiah, ia dilakukan untuk mengumpul data dan informasi yang berguna untuk membangunkan projek ini pelbagai sumber rujukan yang digunakan seperti buku, jurnal dan rangkaian laman internet. Seterusnya pada peringkat analisis, peringkat ini dijalankan dengan mengunakan perisian "MDesign" dan "Working Model". Keputusan yang diperoleh akan mempengaruhi keseluruhan rekaaan mesin ini.. Ini kerana, perisian ini digunakan untuk menganalisa dan mengkaji penyelakuan gear. Secara konklusinya, perisian ini amat mempengaruhi proses rekaan gear dalam membina projek ini.

DEDICATION

Special dedication to:

My father, Saeman bin Mamat; mother, Saprah bte Jalil; brothers, Abu Hasyim Muhadir, Abdul Rahim and Ahmad Rafaee; sister, Asiah who are very concern, understanding, patient and supporting. This project and success will never achieve without all of you.

ACKNOWLEDGEMENT

I would like to thanks everyone that have involve in the making of this project and to those who have given generous contribution within the period of this thesis development to fulfill the requirement for the Degree of Bachelor of Manufacturing Engineering (Robotic and Automation) with Honours.

Here, I would like to express my deepest appreciation to my supervisor, Mr. Ismail Bin Abu shah, whose have given such effort in helping and support to complete this project. His constant guidance and support during my project writing is invaluable to me. His continuous direction and opinion regarding the flow of the project has a mass contribution to achieve the objective of the project. Furthermore, the guide and help of him to make this project a more effective reference are followed with my sincere gratitude. And not to forget the University especially Faculty of Manufacturing Engineering that had provide me with all the studies equipment for this project.

I also would like to thanks my parent, all my friends and lecturers who have done a lot of things and helped me to fulfill and finished this project. I also like to send my best of luck to everyone whom have and will take the final year project and hopefully we together can complete and finished the project successfully.

Finally I hope this project can be used to help and improve for human life standard. Not just in industry and manufacturing but for all sectors in the real world.

TABLE OF CONTENTS

Abstr	act	1
Abstr	ak	ii
Dedic	ation	iii
Ackno	owledgement	iv
Table	of Content	v
List o	f Tables	viii
List o	f Figures	ix
List A	Abbreviation	xii
1. IN	FRODUCTION	1
1.1	Background	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope of Studies	4
1.5	Project Planning	5
2. LI	TERATURE REVIEW	7
2.1	Development	7
2.2	Automation	9
2.3	Satay	11
2.4	Meat	12
2.4.1	Beef	13
2.4.2	Chicken	15
2.4.3	Structure of meat	15
2.4.4	Texture of meat	17
2.5	Skewering process	18
2.5.1	The invention of the new Rota Chef Skewerite Satay	18
2.5.2	MARDI Innovation for mechanical skewering satay	22
2.6	Mechanism	24
2.7	Gear	26

2.7.1	History of gearing	26
2.7.2	Gear definition	27
2.7.3	Gear classification and geometry	28
2.7.3.	Gears for connecting parallel shaft	29
2.7.3.2	2 Gears for connecting intersecting shaft	35
2.7.3.3	Neither parallel nor intersecting	37
2.7.4	Terminology of gear	40
2.7.5	Gear life prediction	43
2.7.5.1	Life for the gear	43
2.7.5.2	2 Gear system life	44
2.7.6	Design of gear	44
3. ME	THODOLOGY	47
3.1	Flow chart	48
3.2	Stage of methodology	49
3.2.1	Understanding the project title	49
3.2.2	Problem statement	49
3.2.3	Literature review	49
3.2.3.1	Satay properties	50
3.2.3.2	2 Assembly mechanism	50
3.2.3.3	Gear mechanism	51
3.2.4	Conceptual design	52
3.2.5	Analyze	52
3.2.6	Detail design	54
3.2.7	Concept testing	57
3.2.8	Documentation and presentation	57
4. RE	SULT AND ANALYSIS	58
4.1	Conceptual design	59
4.1.1	Concept I: Pneumatic cylinder	59
4.1.2	Concept II: Sprocket and chain	60
4.1.3	Concept III: Cam and follower	61
4.1.4	Concept IV: Gear	63
4.1.5	Evaluation criteria using Pugh concept selection matrix	64
	C Universiti Teknikal Malaysia Melaka	

4.2	Experimental analysis	65
4.2.1	Manually satay skewering process	65
4.2.2	Force that acting on meat	66
4.2.3	Force that acting on chicken	70
4.3	Computational analysis	74
4.3.1	Gear design analysis	74
4.3.1.1	Input data	74
4.3.1.2	2 Result	75
4.3.2	Dynamic analysis	78
4.4	Detail design	81
4.4.1	Material selection in design machinery	81
4.4.1.1	Base part	81
4.4.1.2	Upper part	82
4.4.2	Body frame part design	83
4.4.3	The meat mould design	84
4.4.4	The stick casing design	86
4.4.5	The stick pusher design	87
4.4.6	Drive and driven mechanism	88
4.4.7	Satay skewering machine design	90
4.4.8	System operation	91
4.5	Conceptual result	93
4.5.1	Machine operation	93
4.5.2	Skewering process	94
4.5.3	Operating time	95
4.6	Summary	98
5. DIS	CUSSION, CONCLUSION AND FURTHER PLANNING	99
5.1	Discussion	99
5.2	Conclusion	102
5.3	Suggestion for further planning	102
REFE	RENCES	103

LIST OF TABLES

1.1	Gantt chart for PSM 1	5
1.2	Gantt chart for PSM 2	6
2.1	Mechanism with different motion in space	24
2.2	Mechanism classification with the transfer function	25
2.3	Methods in analysis and design of mechanism	26
2.4	Recommended backlash for assembled gear	32
2.5	Suggested overload factors	45
4.1	Pugh concept selection matrix for the mechanism	64
4.2	Data for skewering force (Meat)	69
4.3	Data for skewering force (Chicken)	71
4.4	Skewering force data for both meat and chicken analysis	72
45	Language command for satay skewering machine	92

LIST OF FIGURES

1.1	Cuts of beef	2
1.2	Manually satay skewering process	3
2.1	Product development path	9
2.2	Element of an automated system	10
2.3	Semi – automated system	10
2.4	Automated system	11
2.5	Satay	12
2.6	Characteristic of meat	13
2.7	Cuts of beef	14
2.8	Cuts of meat	14
2.9	Boneless skinless chicken breast	15
2.10	The fibrous microstructure of meat	17
2.11	Stainless steel is inserted	19
2.12	Lower and bottom plate is place in the box.	19
2.13	The meat is loaded	20
2.14	Top plate is placed	20
2.15	Insert skewer	20
2.16	(a) Stainless steel is removed	21
	(b) Meat is cutting	21
2.17	(a) Top plates	21
	(b) Box.	21
2.18	Separate the meat	21
2.19	Marinade satay	22
2.20	Spur gear	29
2.21	External spur gear geometry	30
2.22	Parallel helical gear	32
2.23	Herringbone gear	33
2.24	Rack and pinion	33
2.25	Rack and pinion terminology	34

2.26	(a) Photograph of a 'rack' on the rail way line	35
	(b) Pinion meshing with rack	35
2.27	Straight bevel gear	35
2.28	Straight bevel gear terminology	36
2.29	Crossed helical gear	37
2.30	Worm gear set showing load vectors	38
2.31	Worm gear set nomenclature	39
2.32	Hypoid gear	40
2.33	Gear terminology	40
2.34	Design power transmitted versus pinion speed graph	46
3.1	Flow chart	48
3.2	Top view of assembly process	51
3.3	Rotating pinion	51
3.4	MDesign tool user interface overview	53
3.5	Working model software user interface	54
3.6	Solidwork user interface overview	55
3.7	Solidwork tool	56
3.8	Model window	56
4.1	The five stages of analysis chapter	58
4.2	Pneumatic cylinder concept	59
4.3	Sprocket and chain concept	60
4.4	Cam and follower concept	61
4.5	Rack and pinion concept	63
4.6	Manually operation skewering meat	65
4.7	Cutting process of meat	66
4.8	Meat slices	66
4.9	Skewering force measurement process	
	(a) Bamboo stick attached on push - pull gauge	67
	(b) Bamboo stick was inserted to the meat	68
4.10	Skewering force that acting on meat chart	69
4.11	Skewering force measurement that acting on chicken	70
4.12	Skewering force that acting on chicken chart	71
	C Universiti Teknikal Malaysia Melaka	

4.13	The twelve degree of freedom	73
4.14	Rack and pinion design model	77
4.15	Working model conceptual design skewering process	78
4.16	Properties data (a) Stick pusher (b) Bamboo sticks	79
4.17	Working model dynamic analysis	79
4.18	Velocity of stick pusher chart	80
4.19	Velocity of satay stick chart	80
4.20	Aluminum materials	82
4.21	Stainless steel	83
4.22	Body frame design	83
4.23	Meat mould design	84
4.24	Positioning method of meat mould	85
4.25	Stick casing design	86
4.26	Stick pusher design	87
4.27	Rotary actuator, rack and pinion design	88
4.28	Automated satay skewering machine	90
4.29	Satay skewering machine operation diagram	91
4.30	Ladder logic diagram of satay skewering machine	91
4.31	Machine operation process flow	93
4.32	Skewering process	94
4.33	Steps of skewering machine	97
5.1	Conceptual operation to locate meat mould on locating pins	101

LIST OF ABBREVIATIONS

NPD New product development

PDMA Product development and management association

PDI Product development Institute

MARDI Malaysian Agriculture Research Development Institute

PLC Programmable logic controller

CVTs Continuously variable transmission system

MDesign Machine Design tool

NURBS Non Uniform Rational B - Spline

CHAPTER 1

INTRODUCTION

This chapter consists of four sub – topic. There are background, problem statement, objectives of project and scope. The purpose of this topic is to describe the problem in traditional way and how to solved its

1.1 Background

Satay is a dish consisting of chunks or slices of dice – sized meat on bamboo skewers. Satay originated from Indonesia, is now popular throughout Southeast Asia. The most common and popular satay are made with grilled beef, lamb, chicken or seafood. As referring in Macmillan Education Dictionary, Satay is meal that barbecued on long thin sticks over a fire and usually served with various spicy seasonings. Satay was invented by Malay or Javanese street vendors influenced by the Arabian Kebab. In the fact, Satay only became popular after the early 19th century.

Now satay is popular for many reasons. In American, satay is called "kebabs". The traditional American will have cubes of meat and vegetables like onions, tomatoes, squash and potatoes, satay made from long strips of meat. The meat is threaded onto skewers to make it easier to handle and to spread the meat out for even cooking. Whereas the traditional Japanese, satay is know as "Yakitori". Yakitori stands scattered all over Japan and serves up hot grilled chicken on a sticks and cold beer. Yakitori is a simple and versatile dish that consists of bite – sized chucks of chicken threaded onto bamboo skewers and grilled over a hot fire. This yakitori are intermixed with vegetables

like leeks and scallions and brushed with soy sauce while cooking to keep them moist and tender. The soy sauce baste be spiced up with ginger, garlic, chives and sake.

In Malaysian, the most common and popular Satay are made of beef and chicken. While, beef especially cows is one of the red meat. Red meat in culinary terminology refers to meat which is red coloured when raw, while in nutritional terminology refers to meat from mammals. Beef is divided into primal cuts. Kyle Miller (2008) mentioned that commonly the preparations of satay only use the parts of rib, and short loin, that is suitable for cooking by heat on a grill (direct heat). Figure 1.1 is shown the cuts.

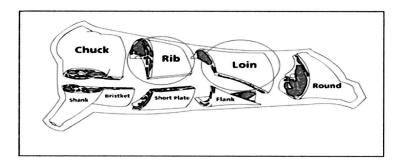


Figure 1.1: Cuts of Beef (http://www.certifiedangusbeef.com, 2008)

Chicken is a type of white meat or poultry meat, and is frequently prepared as a food in a large number of ways because of its relatively low cost. Usually, chicken are cuts in 8 pieces. There are 2 breast halves with ribs and back portion, 2 wings, 2 thighs with back portion and 2 drumsticks. Usually the preparation of satay is use breast halves parts.

1.2 Problem Statement

The preparation of satay has been up until now very time consuming and labor intensity. In the processing of satay, the beef and chicken meat was first cut into thin strips about 1cmx 1.5cm x 2.5cm and seasoned with marinade and then threaded on to satay sticks (3 or 4 pieces of thin strips of meat per stick). Satay requires great care in handling and control of all stages of processing due to the potential seriousness of any contamination. Skewering process is one of manual operations in processing of satay.

Traditionally, the skewering process is carried out manually by inserting the spikes or skewers trough the meat. The skewering process is a delicate, tedious and time – consuming job and not to mention the highly unhygienic factor due to manhandling of the meat strips. However, these techniques suffer from disadvantage of non – uniform food placement on the skewers. Safety has been issues, which is address with the satay maker. On average in the skewering process, a skilled worker is able to produce 1 000 – 1 500 satay per day working 8 hours a day.

Figure 1.2: Manually satay skewering process (http://www.foodlah.com, 2008)

Therefore, this problem has become the primary aim of the present invention, to develop the machine for skewering meat for the production of satay that provides unique, fast and safety equipment for the preparation of satay.

1.3 **Objective**

The main objectives that have to be considering for this project; stated as below

- (a) To develop automated satay skewering machine.
- (b) To design and analyze gear design technique for skewering meat.
- (c) To increase mass production.

1.4 Scope

The studies will focus primarily on development automated satay skewering machine and gear design technique. Other aspects such as the grilling and packing process after skewering meat is not covered in this project, but the main targets to develop this project are same; to reduce time, more efficient and hygienic environment by using relay approached to automated the system and gear as a mechanism technique. The summarization of the scope studies can be defined in the point form below:

- (a) Study the knowledge that related of satay properties and skewering methods from several sources such as books, journal and internet website.
- (b) Analyze gear mechanism that use for skewering satay.
- (c) Design 3D model for the invention
- (d) Develop a machine for skewering meat process.

Project planning 1.5

Table 1.1: Gantt chart for PSM 1

Week 13 Week 14					,				
Week 12									
Week 11									
Week 10									
Week 9									
Week 8									
Week 7									
Week 6									
Week 5									
Week 4									
Week 3									
Week 2									
Week 1				*					
Week	PSM Briefing and Project Selection	Understand the title and project planning	Chapter 1 (Objective and Scope)	Research Finding Materials	Chapter 2 (Literature Review)	Chapter 3 (Methodology)	Chapter 1,2 & 3 Correction	Draft Report	Final Report

Table 1.2: Gantt chart for PSM 2

Week Process	Wedt 1	C.Abelty	£ ¥P9M	Wesk 4	Week 5	Week 6	Week 7	Week 8	Wed: 9	Week 10	Week 11	Week 12	Weds 13	Week 14
Conceptual design														
Experimental Analys is														
Mechanism selection														
Detail design														
Computational analysis														
Redesign and improvement														
Discussion and suggestion														
Documentation														
Final Report														
Presentation														

CHAPTER 2

LITERATURE REVIEW

When look at the satay, there are many questions about the process should be know. How to skewer the meat? What force that use to skewered its? How to make it? What the design technique that used to skewered the meat? What the automation element that uses at the machine and so on. For this project, gear and gear trains design approached is used as a mechanism to skewer the meat. In food industry the cleanliness is very important to avoid any contamination from the micro organism in the meat and rust from steel that used to build the machine. In that case, material that will be selected should be suitable for the future designing.

This chapter consists of six sub – topic. There are development, automation, satay, assembly, mechanism, and gear. The purposes of this topic are to know the term that related for the projects and also to compare the past invention and this development.

2.1 Development

Anonymous (2005) describe that product development can be defined as a broad field of endeavour dealing with the design, creation, and marketing of new products. Sometimes referred to as new product development (NPD), the discipline is focused on developing systematic methods for guiding all the processes involved in getting a new product to market.