MODELLING RAYLEIGH FADING PROPAGATION AND EFFECT IN WIRELESS COMMUNICATION CHANNEL USING MATLAB

MOHD AL HAFIZ BIN OSMAN

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours

Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka

May 2008

UNIVERSTI TEKNIKAL MALAYSIA MELAKA

FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN

PROJEK SARJANA MUDA II Modelling Rayleigh Fading Propagation And Effect In Tajuk Projek **Wireless Communication Channel Using MATLAB** Sesi 2007 / 2008 Pengajian SayaMOHD AL HAFIZ BIN OSMAN..... (HURUF BESAR) mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syaratsyarat kegunaan seperti berikut: 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka. 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi. Sila tandakan (√): (Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang telah ditentukan oleh TERHAD* organisasi/badan di mana penyelidikan dijalankan) TIDAK TERHAD

Alamat Tetap: 8600, Tmn Hj Abdullah Samad, 78300 Masjid Tanah Melaka

(COP DAN TANDATANGAN PENYELIA)

Disahkan oleh:

REDZUAN B ABDUL MANAP Ketua Jabatan (Kej Telekomunikasi) Fakulti Kej Elektronik dan Kej Komputer (FKEKK) Universiti Teknikal Malaysia Meiaka (U 'eM' Karung Berkunci 1200. Aver Keroh, 75450 Melaka

Tarikh: 69/05/08

DECLARATION

"I hereby declare that this report is result of my own works except for quotes as cited in the references."

Signature : The Control of the Contr

Author : .MOHD AL HAFIZ BIN OSMAN

Date : 09 105 108

PENGESAHAN PENYELIA

"Saya akui bahawa saya telah membaca laporan ini dan pada pandangan saya laporan ini adalah memandai dari segi skop dan kualiti untuk tujuan penganugerahan Ijazah Sarjana Muda Kejuruteraan Elektronik (Elektronik Telekomunikasi) Dengan Kepujian."

Tandatangan

Nama Penulis

: .EN REDZUAN BIN ABDUL MANAP :9/5/08

Tarikh

DEDICATION

To my beloved family especially my mothers. Thank for supporting me and thank for God.

ACKNOWLEDGEMENT

Alhamdulillah, thanks to Allah the Almighty that I could finish this PSM 2 thesis. I want to express my sincere to the people that I had given support during this project implementation. First of all, I would like to thank to my supervisor Mr Redzuan bin Abdul Manap for his advise and assistance to me for accomplishing the project. Then, to my fmily especially my mum, Hjh Siti Rohani bt Md Isa and to all my friends for their suggestion and critism that always improved my progress in this project. Finally, I want to express my gratitude to all those involves in my project directly or indirectly.

ABSTRACT

In wireless communication system, the transmitted signal is distorted by various phenomena that are intstrinsic to the structure and contents of the wireless channel. Among these, multipath fading is dominant source of distortion in wireless communication. Fading refers to the fluctuations in amplitude, phase and multipath delays over very short travels distance or very short time durations One type of fading, called Rayleigh fading, happens when the transmitted signal go through several deflected path and there is no line of sight path. This fading can be modeled using Jakes' simulator, which is sum-of-sinusoid (SOS) simulator. The aim of this project is to implement the Jakes' simulator using MATLAB. The performance of this simulator is tested and analyzed.

ABSTRAK

Dalam sistem perhububungan tanpa wayar, isyarat yang dihantar dipengaruhi beberapa fenomena. Antarnya ialah, mulitipath fading yang paling banyak mempengaruhi isyarat tersebut. Fading merujuk kepada perubahan pada amplitud, fasa dan serakan dalam perjalanan. Terdapat satu jenis fading yang dikenali sebagai Rayleigh fading. Ia berlaku apabila isyarat yang dihantar akan melalui beberapa laluan yang terserak dan tidak terdapat laluan terus. Fading boleh dimodelkan menggunakan Jakes' simulator, iaitu sejenis sum-of-sinusoid (SOS) simulator. Matlamat utama projek ini ialah untuk mengaplikasikan Jakes' simulator menggunakan MATLAB. Dan seterusnya menganalisa simulator dan menguji simulator itu.

TABLE OF CONTENTS

CHAPTER	TOP	PIC	PAGE
	PRO	JECT TITLE	i
	PSM	II REPORT STATUS	ii
	DEC	LARATION	iii
	PEN	GESAHAN PENYELIA	iv
	DED	ICATION	v
	ACK	NOWLEDGEMENT	vi
	ABS'	TRACT	vii
	ABS'	TRAK	viii
	TAB	LE OF CONTENTS	ix
	LIST	OF TABLES	xii
	LIST	OF FIGURES	xiii
	LIST	OF ACRONYMS	XV
	LIST	OF APPENDIX	xvi
I	INTI	RODUCTION	
	1.1	Introduction	1
	1.2	Problem Statements & Objectives	2
	1.3	Scopes of Work	2
	1.4	Project Methodology	3
		1.4.1 Flow Chart	4
	1.5	Expected Results	4

	1.6	Project Planning	5
	1.7	Thesis Layout	6
II	LITE	RATURE REVIEW	
	2.1	Multipath Propagation	7
	2.2	Multipath Fading	11
		2.2.1 Doppler Spread	12
		2.2.2 Fading	13
	2.3	Fading types	
		2.3.1 Rayleigh Fading	15
		2.3.2 Rician Fading	17
		2.3.3 Nakagami Fading	19
	2.4	Probability density function (PDF)	21
Ш	THE	ORY	
	3.1	Introduction	22
	3.2	Jakes' Simulator Design	23
	3.2.1	The Reference Model and Jakes' Simulator	24
	322	Improving Jakes' Design	30

IV	RES	ULTS	
	4.1	Matlab Implementation	33
	4.2	Analysis for Jakes Simulator Design	34
		4.2.1 Discussion / Observation	38
	4.3	Improved Jakes Simulator	41
		4.3.1 Discussion / Observation	47
V	CON	NCLUSION	
	5.1	Conclusion	50
	5.2	Recommendation	51
	RFF	ERENCES	52
		ENDIX	54

LIST OF TABLES

NO	TITLE	PAGE
1.1	Project Planning for PSM	5
3.1	Parameter for Jakes' Simulation Model	28
3.2	Parameter for Jakes' Simulation Model	31

LIST OF FIGURES

NO	TITLE										
1.1	Flow Chart of the PSM	4									
2.1	Typical Model of Land Mobile Radio	8									
2.2	Types of Multipath Fading, Shadowing and Path Loss										
	Phenomena	11									
2.3	Doppler Power Spectrum	12									
2.4	One second of Rayleigh fading with a maximum										
	Doppler shift of 10Hz.	16									
2.5	One second of Rayleigh fading with a maximum										
	Doppler shift of 100Hz.	16									
2.6	Phasor Diagram of Rician fading signal	17									
3.1	Jakes' fading channel simulator	26									
3.2	Symmetry of arriving rays in Jakes' design	29									
3.3	Improving Jakes' simulator by the introduction of										
	random phases in the low-frequency oscillators	30									
3.4	Symmetry of arriving rays in Jakes' design	32									
4.1	Transmitted signal for M=2; N=10	34									
4.2	Received signal for M=2; N=10	35									
4.3	Transmitted signal for M=5; N=22	36									
4.4	Received signal for M=5; N=22	36									
4.5	Transmitted signal for M=8; N=34	37									

4.6	Received signal for M=8; N=34	37
4.7	Quadrature Signal	39
4.8	Inphase Signal	39
4.9	Transmitted signal for M=2; N=10	41
4.10	Received signal for M=2; N=10 (random value 1)	42
4.11	Received signal for M=2; N=10 (random value 2)	42
4.12	Transmitted signal for M=5; N=22	43
4.13	Received signal for M=5; N=22 (random value 1)	43
4.14	Received signal for M=5; N=22 (random value 2)	44
4.15	Transmitted signal for M=8; N=34	45
4.16	Receiver signal for M=8; N=34 (random value 1)	45
4.17	Receiver signal for M=8; N=34 (random value 2)	46
4.18	Quadrature Signals	48
4 10	Innhea Signale	10

LIST OF ACRONYMS

Line-of-sight LOS

No line of sight **NLOS**

Transmitter/receiver (T/R)

Bandwidth $\mathbf{B}_{\mathbf{D}}$

 f_c Sampling frequency

 f_d Doppler frequency

Bit-error-ratio **BER**

Proxibity density function PDF

Maximum ratio combining **MRC**

SOS Sum-of -Sinussoids

WSS Wide-sense stationary

RVs Random variables

LIST OF APPENDIX

NO	TITLE	PAGE
A	Source Code for Jakes Simulator Design	54
В	Source Code for Improved Jakes Simulator Design	57

CHAPTER I

INTRODUCTION

1.1 INTRODUCTION

Transmitted signal arrives at the receiver through various path of different length. Multiple version of the signal interferes with each other lead to the effect called fading. One of the common fading is known as Rayleigh fading. In this project, Initial work is required to generate the model of the transmitted signal. Later, Rayleigh fading propagation need to be modeled and subsequently its effect on the transmitted signal in wireless communication channel is analysed. All the simulation and modeling in this project is done using MATLAB.

1.2 PROBLEM STATEMENTS AND OBJECTIVES

There are many models/simulators that are used to represent the fading phenomenon in wireless communication system. However, only a few of these simulators uses the MATLAB software to model fading phenomenon in wireless communication.

The objective of this project is:

- a) To enhance the knowledge of fading phenomena using Jakes simulator.
- b) To model the Jakes simulator and analyses it in MATLAB.

1.3 SCOPES OF WORK

The scopes of works in this project are:

- Theories and background knowledge acquisition of wireless communication channel, types of fading, Rayleigh fading and Jakes model.
- 2) Implementation of Jakes simulator model in MATLAB
- Performance analysis of the simulator in modeling Rayleigh fading in wireless communication channel.

1.4 PROJECT METHODOLOGY

- 1) Literature review
 - Data acquisition or background study of multipath effect, types of fading such as Rayleigh and types of simulator.
- 2) Jakes simulator study
 - Background theory of the simulator including its parameters, condition and operation
- 3) Implementation of Jakes simulator in MATLAB
- 4) Testing the program code of the simulator
- 5) Performance analysis and results of the simulation
- 6) Thesis writing
- 7) Presentation

1.4.1 FLOW CHART

The figures show the flow chart to complete PSM:

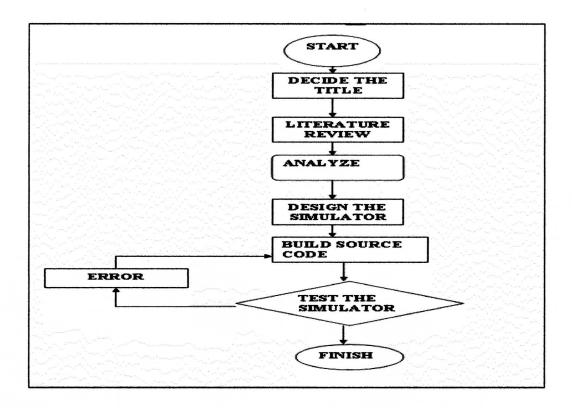


Figure 1.1: Flow Chart of the PSM

1.5 EXPECTED RESULT

At the end of this project, the expected results are:

- 1) Successfully gain knowledge about the effect of Rayleigh fading on the performance of data transmission in wireless communication channel.
- 2) Successfully implementation of Jakes Simulator in MATLAB.

1.6 PROJECT PLANNING

Table 1: Project Planning for PSM

												PI	ER/	NN (AN	IGA	IN I	PR()JE	K																		
Senara	kan	akt	iviti	akt	iviti	uta	ma	ba	gi p	roje	k y	ang	dic	ad a	ingk	an	. Ny	rata	kai	n ja	ngk	a m	25 2	ya	ng	dipe	rluk	an	baş	gi s	etia	p ai	ictiv	iti.				
											2	:007						•												20	08							
AL-M. Daniel		Jek		Π	Atg	jest		5	ept	mbe	1	Г	Q cl	ber	П	,	love	mbe	ı	1	Dece	m be	1		Jas	taly		1	Feb	нац			n:	arci		Γ	Ą	pff
Aktiviti Projek		2	3	1	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	1	2	3	1	5	6	7	8	9	10	11	12	13	14	15
Tile Selection								Г						Г						-	Т	_	-							П	П		\vdash	\vdash	Т	П		
Project Proposal							Т																							П			\vdash	T	\vdash			
Literature review	1	Г												1		1										Т	Г	\neg						Г	Т			Г
Jakes simulator study				Г												1															П			Г	Г			
Seminar 1	1													1		-					100					Т		\neg						Г	Г			
Submit.report. PSM 1							Г							-				****		-		75							_					Г	Г		П	
Imp himented Jakes simulator in MATLAB	PSRI			Г											0			1				em e st							MIST CO	П			Γ	Γ	Γ		П	Γ
Testing the program code of the simulator	ibra flag			Г		Г									Study leave							Semester Bæd							m BRa				Г	Γ	Г			Г
Troubleshoot	۳			Г																-	1	*		9		Т			*									
Thesis writing				Г		П								-																								
Draftreport submission				Г		Г	Г					П														Г							Г		Γ			
Seminar 2	1		Г	Г				Г												****						Г			-	П			Г	Г	Г		П	Г
Thesis submission																										T		_	0					Γ	Г			

1.7 THESIS LAYOUT

This thesis is organized as follows:

Chapter 1:Introduction

This project is introduced where there problem is identified and this the project objectives is outlined. Beside that, the scope of work of this project is describe.

Chapter 2: Literature Review.

In this chapter, theories and background of wireless communication channel is discussed. All aspect of the wireless communication like multipath propagation, Doppler spread, types of fading and etc are in this chapter and for this chapter. The reference are from the books, internet, journals and etc.

Chapter 3: Jakes Simulator Model

The model is discussed here including the block diagram for Jakes Model and Improved Jakes Simulator and all the simulator output signal are in this chapter. Output signal are divided by 2. One of them is Inphase components and another is Quadrature components.

Chapter 4: Results

Experimental/Simulation results are presented here. The value of M and N is fix for simulation progress. The analysis of the Jakes and Improved Jakes model also discusses in this chapter

Chapter 5: Conclusion

All the chapter are summarize and also recommendation about modelling Rayeigh fading in this chapter has been discussed.

CHAPTER II

LITERARUTE REVIEW

2.1 Multipath Propagation

In wireless telecommunications, multipath is the propagation phenomenon that results in radio signals' reaching the receiving antenna by two or more paths. Causes of multipath include atmospheric ducting, ionospheric reflection and refraction, and reflection from terrestrial objects, such as mountains and buildings.

The effects of multipath include constructive and destructive interference, and phase shifting of the signal. This causes Rayleigh fading, named after Lord Rayleigh. The standard statistical model of this gives a distribution known as the Rayleigh distribution. Rayleigh fading with a strong line of sight content is said to have a Rician distribution, or to be Rician fading.[1]

In facsimile and television transmission, multipath causes jitter and ghosting, seen as a faded duplicate image to the right of the main image. Ghosts occur when transmissions bounce off a mountain or other large object, while also arriving at the antenna by a shorter, direct route, with the receiver picking up two signals separated by a delay.

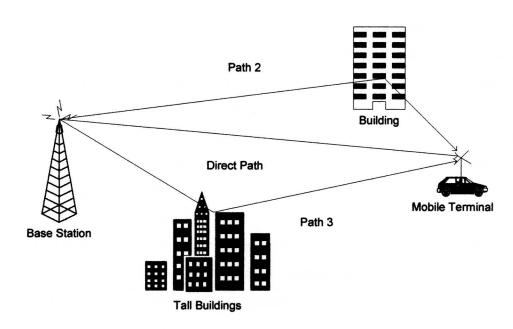


Figure 2.1: Typical Model of Land Mobile Radio [2]

Figure 2.1 is a typical model of a land mobile radio consists of an elevated base-station antenna (or multiple antennas) and a relatively short distance line-of-sight (LOS) propagation path, followed by many no line of sight (NLOS) reflected propagation paths and a mobile antenna or antennas mounted on the vehicle or more generally on the transmitter/receiver (T/R) or transceiver of the mobile or portable unit.