

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT ROBOT DRIVE SYSTEM USING MECANUM WHEEL

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotic and Automation) with Honours.

by

ZUL AZRI BIN ZAINAL B050810123

FACULTY OF MANUFACTURING ENGINEERING 2011

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Design and development robot drive system using Mecanum Wheel

SESI PENGAJIAN: 2010/11 Semester 2

Saya ZUL AZRI BIN ZAINAL

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

 SULIT
 (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

 TERHAD
 (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

 TIDAK TERHAD
 Disahkan oleh:

Alamat Tetap:

AE 2-2, Jalan Pandan Indah 3/3,

Pandan Indah,

55100 Kuala Lumpur, Pahang.

Tarikh: <u>18 May 2011</u>

Tarikh:

PENYELIA PSM

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

🔘 Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Design and development a robot drive system using mecanum wheel" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	ZUL AZRI BIN ZAINAL
Date	:	19 MAY 2011

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic and Automation) with Honours. The member of the supervisory committee is as follow:

.....

Supervisor

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Pemilihan penggerak untuk robot saat ini masih tertumpu kepada penggunaan roda biasa. Hal ini mungkin kerana kosnya yang jauh lebih murah berbanding dengan roda mecanum. Projek ini akan menunjukkan manfaat dan kemampuan robot apabila menggunakan roda mecanum sebagai penggerak dari segi jenis gerakannya. Roda Mecanum juga dikenali sebagai Roda Sweden yang telah wujud di dunia sejak tahun 1973. Roda mecanum adalah istimewa dan unik jika dibandingkan dengan roda lain tetapi roda ini mahal berbanding dengan roda standard yang lain dan kerana rekabentuknya, proses pengaturcaraan lebih sukar dan rumit. Tujuan projek ini adalah untuk merancang dan mengembangkan sebuah robot yang mampu bergerak di segala arah dengan menggunakan roda mecanum khusus. Projek ini melibatkan proses untuk mereka bentuk dan membina sistem pandu robot dengan roda mecanum dan dikendalikan secara manual menggunakan alat kawalan jauh. Pada peringkat awal projek ini di PSM1, ia melibatkan proses untuk merancang dan membina robot dari segi struktur mekanikal, litar elektronik dan pengaturcaraan PIC. Dua rekabentuk konsep telah dicadangkan. Yang terbaik dipilih untuk fabrikasi. Projek ini melibatkan proses untuk menghasilkan alat kawalan jauh khas untuk robot dan 'voltage regulator' dalam proses fabrikasi komponen elektronik. Komponen SK40C dan MD30B, juga gunakan dalam projek ini sebagai mikropemproses dan pemacu motor. Setelah semua proses selesai termasuk pemasangan semua komponen, kod pengaturcaraan dimuat turub dan juga di uji. Kaedah ujian dirancang dan dilaksanakan dalam menentukan samada projek ini mencapai matlamat projek ataupun tidak. Sebagai kesimpulan, projek ini berjaya mencapai matlamat projek tapi masih memerlukan penambahbaikan lebih lanjut di masa akan dating untuk memastikan robot ini lebih sempurna.

ABSTRACT

Locomotion for most mobile robots today is still focused on the standard wheel. This may be due to its cost which is much cheaper compared to mecanum wheel. This project will show the benefit of using mecanum wheel as locomotion from its movement specialty. Mecanum wheels also known as Swedish wheel were born to the world in 1973. The mecanum wheels are special and unique compared to other wheels. These wheels are expensive compared with other standard wheel and due to its design, the programming process more difficult and complex. The aim of this project is to design and develop a mobile robot that able to move at any direction using the specialty of mecanum wheel. This project involves to design and build a robot drive system with mecanum wheel and controlled manually using a teach pendant. In the early stages of this project at PSM1, it involves a process to design and develop the robot mechanical structure, electronic circuit and programming PIC. Two conceptual designs have been proposed. The best one will be chosen for fabrication. This project involves to fabricate a custom made of teach pendant and voltage regulator for electronic component. The SK40C and MD30B, also being use in this project as the microcontroller and motor driver respectively. After all designing and development process is fully done, it involves to assemble and component, loading programming and test the robot. The testing methods are planned and perform in order to define weather this project is achieve the objective or not. As the conclusion, this project is successfully achieved the project aim but it still require further improvement to make this robot perfect.

DEDICATION

This final year project report or PSM1 report is wrote in order to fulfill the requirement before continue work for PSM2 project. First of all, this report will dedicates to beloved supervisor, Madam Syamimi binti Shamsuddin who always giving advice and best guides to write a best report. Without her guidance, I would be not able to write this report with good contents and with proper format. This report also will dedicate to my family who are always supports me to do best in study especially my mom and dad. Finally, I would like to thanks to all of my friends especially Mohd Iskandaredzuan, Mohd Firdaus, Mazalinda and Kannan; student under Madam Syamimi supervision for PSM project for your support and kindness in helping me to finished this report. Thank you very much.

ACKNOWLEDGEMENT

I would like express my gratitude especially to Allah S.W.T for His fate on me through this project and chances give to me to keep breathing and healthy until today. And also to everyone who has offered me valuable advice in order to finish this project.

First of all I would like to take this opportunity to express my sincere thanks to my dissertation supervisor, Pn Syamimi for her valuable time on advising and guides. My thanks are also to family who always support for my success.

ZUL AZRI BIN ZAINAL APRIL 2011

TABLE OF CONTENT

Abstra	ak	i
Abstra	act	ii
Dedic	ation	iii
Ackno	owledgement	iv
Table	of Content	v
List of	f Tables	X
List of	f Figures	xi
List A	List Abbreviations	
1.0 IN	TRODUCTION	1
1.1	Background	1
1.1.1	History of Robot	2
1.1.2	Robot Definition	2
1.1.3	Classification of Robot	3
1.1.4	Application of Mobile Robot	6
1.1.5	Mobile Robot with Mecanum Wheel	7
1.2	Problem Statement	7
1.3	Project Aim & Objectives	8
1.4	Scope	9
1.5	Project Planning	9
1.6	Expected Outcome	9

2.0 LITERATURE REVIEW	
2.1 Introduction	12
2.2 Overview of Mobile Robot	12
2.2.1 Autonomous Robot	13
2.2.2 Manual mobile Robot	14
2.2.2.1 Application of manual mobile robot	15
2.2.2.2 Manual mobile robot teaching pendant	16
2.3 Actuator	18
2.3.1 Types of DC Motors	19
2.3.1.1 Brushed motor	20
2.3.1.2 Brushless motor	20
2.3.2 Speed control of motor	21
2.4 Wheel	22
2.4.1 Wheel Classification	22
2.4.1.1 Standard wheel	22
2.4.1.2 Omni-directional wheel	23
2.4.1.3 Spherical Wheel	24
2.4.2 Mecanum wheel	25
	25
2.4.2.1 Mecanum Wheel direction control	23
2.4.2.1 Mecanum Wheel direction control2.5 Robot Platform & dimension	25 26
2.5 Robot Platform & dimension	26
2.5 Robot Platform & dimension2.6 Microcontroller	26 27

vi

C Universiti Teknikal Malaysia Melaka

2.7.1	History of Computer	31
2.7.2	Element of Computer	31
2.7.2.1	Hardware	32
2.7.2.2	2 Software	33
2.7.3	The Language of computer	33
2.7.4	Programming Language	34
2.8	Software for design	35
2.8.1 \$	Software for mechanical design	35
2.8.1.1	Catia	36
2.8.1.2	2 AutoCAD	36
2.8.1.3	3 Solidwork	37
2.8.2	Software for design PIC Programming	38
2.8.2.1	Micro C	38
2.8.2.2	2 MPLab	39
2.8.3	Software for design circuit	39
2.8.3.1	Proteus	40
2.8.3.2	2 PCB Express	40
2.9	Material for robot bodies	41
2.9.1	Aluminium	42
2.9.2	Stainless steel	42
2.9.3	Mechanical fastener	43
2.9.3.1	Rivet	43
2.9.3.2	2 Screw	44
2.10 P	roject Related to mecanum wheels.	45

vii O Universiti Teknikal Malaysia Melaka

2.10.1	Design and Control of Mobile Robot with Mecanum Wheels	by Han et. al. 45
2.10.1	1 Project summary.	45
2.10.1	2 Introduction	46
2.10.1	.3 Method	47
2.10.1	4 Project Result & Discussion	47
2.10.1	5 Project overview	49
2.10.2	Designing Omni-Directional Mobile Robot with	
	Mecanum Wheel by Efendi et. Al	49
2.10.2	1 Project Summary	50
2.10.2	2 Project Result and Discussion	51
2.10.2	3 Project Review	52
3.0 M	ETHODOLOGY	53
3.1	The Overall Flowchart	53
3.2	Phase	55
3.2.1	Literature Research Stage	55
3.2.2	Design Stage	56
3.2.3	Development Stage	56
3.3	Study and Research	57
3.3.1	Journal	58
3.3.2	Book	58
3.3.3	Internet	58
3.4	Material Selection	59
3.4.1	Base	59
3.4.2	Mecanum Wheel	60
3.5	Designing Software	61
3.5.1	Mechanical designing software	61
3.5.2	Circuit designing software	63
3.6	Project tools and equipped	66
3.6.1	Drilling machine	66
3.6.2	Grinding machine	66

3.6.3	Band Saw Metal Cutter	66
3.7	Conclusion	67
4.0 DI	ESIGN AND DEVELOPEMENT	
4.1	Introduction	69
4.2	Mechanical Designing Stage	70
4.2.1	Conceptual Design 1	70
4.2.1.1	1 Advantage Of Design 1	70
4.2.1.2	2 Disadvantages	71
4.2.2	Conseptual Design 2	71
4.2.2.1	1 Advantages Of Design 2	72
4.2.2.	2 Disadvantage	72
4.2.2.3Conceptual Design 3		73
4.2.3.1 Advantages Of Design 3		73
4.2.3.2 Disadvantage		74
4.3.1	Remote Control / Teaching Pendant Circuits	75
4.3.2	Voltage Regulator Circuits	75
4.4	Programming Design Stage	76
4.5	Mechanical Development Stage	77
4.5.1	Robot Base	77
4.5.2	Wheel coupling	79
4.6	Electrical / Circuit Development Stage	80
4.6.1	Teach Pendant	81
4.6.2	Voltage Regulator	82
4.6.3	PIC Board Cytron SK40C	82
4.6.4	Motor Driver Cytron MD30B	83
4.7	Final Assembling Process	84

5.0 TESTING, RESULT AND DISCUSSION

5.1	Introduction	86
5.2	Testing Stage	86
5.2.1	PIC Kit Testing and Result	87
5.2.2	Motor Testing and Result	88
5.2.3	Teach Pendant Testing and Result	89
5.2.4	Avoiding obstacle Testing and Result	91
5.2.5	Discussion	96

6.0 CONCLUSION AND SUGGESTION

6.1	Introduction	97
6.2	Conclusion	97
6.3	Suggestion	98
6.3.1	Motor Speed	98
6.3.2	Suspension	98
6.3.3	Control system	99
6.3.4	Visual Basic control	99

REFERENCES

APPENDICES

99

LIST OF TABLE

5.1	PIC kit SK40C testing sheet	86
5.2	Motor testing Check list	88
5.3	Teach Pendant Check list	89
5.4	Motor rotation formation for robot movement	90
5.5	Obstacle Avoiding Check list	92

LIST OF FIGURES

1.1	Robot classification	5
1.2	Articulated robot	5
1.3	Mobile robots for hazardous task	6
1.4	Mecanum wheel variations	7

2.1	Autonomous Legged Robot	14
2.2	Toyota Motor's human-controlled walking robot 'I-foot,'	15
2.3	NASA robot in space	16
2.4	RF Remote with Thumb Joystick	17
2.5	DC Motor working principle	19
2.6	Standard Wheel	23
2.7	Omni-directional wheel	24
2.8	Wheel rotation and direction effects	26
2.9	PIC 16F877A with pin-out code	28
2.10	Rivet pin	43
2.11	Screw variations	44
2.12	Force vector created by Mecanum wheel	51

3.1	Overall flow chart for project process	54
3.2	Flow chart of the Research Stage	55
3.3	Flow Chart for Designing Stage	56
3.4	Flow Chart of the Testing and Analysis Phase	57
3.5	Example of book cover	58
3.6	An Example of Robot Base Using Aluminum	59
3.7	Mecanum Wheel 2D Drawing	60

xii O Universiti Teknikal Malaysia Melaka

3.8	Wheel Mirrored Positioned at Robot Base	60
3.9	Autocad 2004 in Start Menu	61
3.10	Autocad 2004 Window appeared	62
3.11	Autocad Drawing Tools Window	62
3.12	Isis Proteus icon	63
3.13	window appear	63
3.14	click on component mode	64
3.15	click on "Pick from Library" icon	64
3.16	Pick devices	65
3.17	Save design icon	65

4.1	First Conceptual Design	70
4.2	Second Conceptual Design	71
4.3	Third Conceptual Design	73
4.4	Teach Pendant Circuit Diagram	74
4.5	Voltage Regulator	75
4.6	Robot base design using Solidwork Software	76
4.7	Mecanum Wheel Mounted On the Robot Base frame	77
4.8	Mecanum Wheel	78
4.9	Coupling	79
4.10	Left; the coupling, Right; Coupling mounted to wheel and motor's shaft.	79
4.11	Left; Inside Teaching pendant, Right; teaching pendant outside look	80
4.12	Voltage Regulator	81
4.13	Cytron SK40C PIC Kit	82
4.14	Cytron MD30B Motor Driver	83
4.15	Final Assembly of Mecanum Wheel Robot with teach pendant	84
5.1	Cytron PIC Kit Button to LED Test	87
5.2	Right push button pushed and triggers the right LED's signal	89

CHAPTER 1

INTRODUCTION

This chapter discusses the basic idea of this PSM project; design and development of a robot drive system with Mecanum Wheel. The topic that will be covered in this chapter is project background, problem statement, project aim & objective, scope, project planning and expected outcome.

1.1 Background

Robot basically can be describe as a machine that programmable and can perform any task without human control. Human tend to build a robot because the robot able to work in flexible and unlimited time, able to handle heavy task and also able to repair if having any damages or problems. According to that, robot nowadays is popular in use especially in manufacturing and production industries. It can be prove by seeing to Malaysian car brand companies such as Perodua and Proton that are using a robot in their production line for a certain process such as for painting and welding process. This

topic then will explained more about the robot including with robot history, its definition and many more.

1.1.1 History Of Robot

Starting from 250BC, human already started to create some mechanism that can be function autonomously without human assistant. This can be prove by Ctesibius of Alexandria invention who build organs and water clocks with movable figures (Jaeger 2005). Starting from that moment, human aggressively build a robot and improve the robot functions and ability. After for a long time human keep build the unnamed system, the word "Robot" then had been introduced by Czech writer, Karel Capek in his play entitled R.U.R or in full name is Rossuum's Universal Robots in early 1920s. "Robot" in Czech comes from the word "robota", meaning "compulsory labor" (Isom 2005). The robot technology today's is advance until the robot were able to walk and act as a human and also able to serve a human. It can seen in year 1996 when Honda build the self regulating, bipedal humanoid robot called ASIMO.

1.1.2 Robot Definition

There is lots of different definitions of robots can be seen in different dictionaries and encyclopedias. But the basic knowledge about robot is it is manufactured by a human to perform any human task that may harm human if performed. A robot is a reprogrammable multifunctional manipulator designed to move material, parts, or specialized devices through variable programmed motions for performance of a variety of tasks (Zhihong 2006). Robot basically are built either to be control manually by a teach pendant or autonomously controlled. Manual robot is a robot that controlled by an operator in order to move or perform any task in certain range. The device used to control the robot called as teach pendant. Autonomous robot is different with manual robot as it is without human control. Autonomous robot basically will perform a task by a programming inserted in robot memory. So that, in order to change the autonomous robot task, human need to add or reprogram the robot.

Robotics can be described as a study of robots. In addition for this sub-title, there are three Isaac Asimov's laws of Robotics. The laws are:-

- a) A robot may not injure a human being, or, through inaction, allow a human being to come to harm.
- b) A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
- c) A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

These three Isaac Asimov's laws is basically is used as a guide or reference for any human who want to built a robot. It is because Asimov believes in fictions that machine or system able to harm and destroyed its creators and he believe that knowledge has it dangers (Clarke 1993). Because of he's believes, he create these 3 laws for creator guidance.

1.1.3 Classification of Robots

There are lots of robot types in this world. The main classification of robot includes; Cartesian Robot, Parallel Robot, Spherical Robot, Scara Robot, Cylindrical Robot, Articulated Robot and Mobile robot. Below are the definitions of every category (Types Of Robots, ROVer Ranch)[4]:-

- a) Cartesian robot /Gantry robot: Used for pick and place work, application of sealant, assembly operations, handling machine tools and arc welding. It's a robot whose arm has three prismatic joints, whose axes are coincident with a Cartesian coordinator.
- b) Cylindrical robot: Used for assembly operations, handling at machine tools, spot welding, and handling at diecasting machines. It's a robot whose axes form a cylindrical coordinate system.
- c) Spherical/Polar robot: Used for handling at machine tools, spot welding, diecasting, fettling machines, gas welding and arc welding. It's a robot whose axes form a polar coordinate system.
- d) SCARA robot: Used for pick and place work, application of sealant, assembly operations and handling machine tools. It's a robot which has two parallel rotary joints to provide compliance in a plane.
- e) Articulated robot: Used for assembly operations, diecasting, fettling machines, gas welding, arc welding and spray painting. It's a robot whose arm has at least three rotary joints.

- f) Parallel robot: One use is a mobile platform handling cockpit flight simulators. It's a robot whose arms have concurrent prismatic or rotary joints.
- g) Mobile robot: have the capability to move around in their environment and are not fixed to one physical location. Mobile robot function is flexible and it is basically according to its creator research and focus in performing task.

Figure 1.1 below shows the figure of five robot classification listed and discussed from seven which is; Cartesian robot, cylindrical robot, spherical robot, scara and articulated robot. The figure is consist with it kinematic structure and working space.

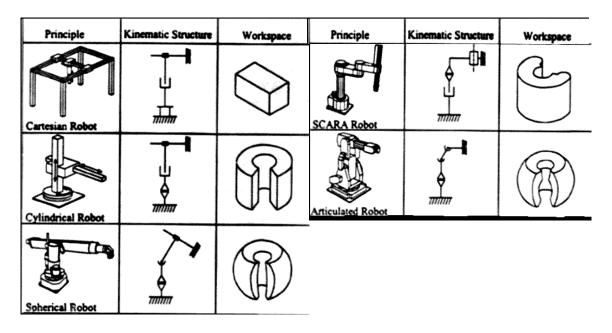
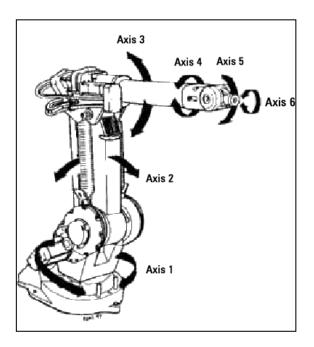
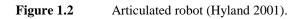





Figure 1.1 Robot classification; Cartesian, cylindrical, spherical, scara and articulated robot (Braz 1999)

Figure 1.2 then show the image or parallel robot while 1.3 is a mobile robot.

1.1.4 Application of Mobile Robot

Mobile robot can be described as a small robot that operated autonomously or manually controlled that can move at any environment profile given. Every mobile robot can be operated to do any task depending to its function and reason of its development. Mobile robot nowadays is widely used in order to perform any task that simple and repeated job or dangerous to human being such as a mobile robot for military used, for an example; the mine detection robot. Mobile robot is widely in use today in many sectors. In manufacturing industries as an example, mobile robot can be used as a part supplier from section to section. It will reduce manpower from supply parts and also will increase accuracy to supplying time. Because of mobile robot size is not over than human sizes and have capability to move around, human tend to use it as a service robot in certain area such as shopping complex for shopping guidance and hospital for nurses and doctor support service. Basically, mobile robot can be used in any sectors and its applications are wide as it can be design and built according to desire task.

1.1.5 Mobile Robot with Mecanum Wheels

Mecanum wheel is a special wheel that consists with the free-rolling sub-wheels positioned at an angel offset from the wheel rotation around its circumference. It is sometimes called the Ilon wheel after its Swedish inventor, Bengt Ilon, who came up with the idea in 1973 when he was an engineer with the Swedish company Mecanum AB (Easton 2009). By using mecanum wheels, mobile robots are able to change its motion direction without needs to turn its drive wheel because the robot that used mecanum wheels is not with the directional drive wheels. This is because of the mecanum wheels specialty. Another specialty of using mecanum wheel is all wheels are consists with independently motor driver and all wheels are giving its role to perfrom any desire direction movement.