DEVELOPMENT OF ALL-TERRAIN ROBOT USING LEGGED MOTION FOR MILITARY PURPOSE

MOHAMMAD FIRDAUS BIN AHMAD B050810063

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2011

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF ALL-TERRAIN ROBOT USING LEGGED MOTION FOR MILITARY PURPOSE

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotic & Automation)

by

MOHAMMAD FIRDAUS BIN AHMAD B050810063

FACULTY OF MANUFACTURING ENGINEERING 2011

AL MAI	AYSIA MA
TEKNIK	AKA
LISTA	
LISSANN	n

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TAJUK: Development of All-Terrain Robot Using Legged Motion for Military Purpose

SESI PENGAJIAN: 2010/11 Semester 2

Saya MOHAMMAD FIRDAUS BIN AHMAD

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

SULIT TERHAD TIDAK TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)	
\mathbf{v}	Disahkan oleh:	
Alamat Tetap: NO 8, Lorong 7B,	PENYELIA PSM	
Taman Mewah,		
Sungai Petani, Kedah.		
Tarikh:	Tarikh:	
** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.		

(C) Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Development of All Terrain Robot Using Legged Motion for Military Purpose" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	Mohammad Firdaus Bin Ahmad
Date	:	19 Mei 2011

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the Degree in Bachelor of Manufacturing Engineering (Robotic & Automation). The member of the supervisory committee is as follow:

.....

Supervisor

ABSTRAK

Pembangunan robot berkaki telah menjadi sangat popular dalam dunia robotik. Roda berfungsi baik di permukaan yang tersedia seperti rel dan jalan, tetapi berprestasi buruk ketika berada pada permukaan yang lembut atau tidak rata. Dengan demikian, robot berkaki adalah lebih sesuai terutama dalam bidang ketenteraan. Tujuan projek ini adalah mereka dan membangunkan sebuah robot untuk semua permukaan untuk tujuan ketenteraan menggunakan gerakkan kaki. Tiga rekaan konseptual telah dicadangkan. Rekaan yang terbaik yang menggunakan empat kaki dipilih dengan menggunakan kaedah Pugh. Perisian MPLAB digunakan untuk memprogramkan pengawal mikro PIC 16F877A. Setelah menyambung bahagia mekanikal, elektrikal dan program, mekanisma yang siap sepenuhnya akan diuji. Keputusan kajian menunjukkan bahawa sasaran projek tercapai dengan robot mampu bergerak di atas permukaan lantai. Tetapi robot sangat susah utnutk bergerak di atas permukaan pasir dan rumput. Cadangan untuk mengatasi masalah ini adalah untuk merekabentuk semula badan dan kaki dan penstrukturan semula program untuk gerakkan robot.

ABSTRACT

Developments of legged robots are becoming more popular in the robotics world. Wheel excel on prepared surfaces such as rails and roads, but perform poorly when the terrain is soft and uneven. Thus, a legged mobile robot is most suitable especially for military application. The aim of this project is to design and develop an all-terrain robot for military purpose using legged motion. Studies from the previous similar projects had been carried out to gather information for the design and development of this project. Three conceptual designs were proposed. The best design with four legs is selected using the Pugh Method. MPLAB software is used to program the PIC 16F877A microcontroller. After interfacing the mechanical, electrical and programming elements, the full working mechanism is tested. Results show that the project target is achieved as the robot is able to move on the floor surface. But it can hardly move on grass and sand surface. Recommendations to overcome the problem are to redesign the robot based and it legs and restructures the programming for the robot movement.

DEDICATION

Special thank to my beloved father, Ahmad Bin Bab and my mother, Siti Noraini Binti Hashim who very concern, understanding and supporting me. Also special thanks to my supervisor, Madam Syamimi Binti Shamsudin for her constructive guidance, encouragement and patient in fulfilling my aspiration in completing this project. Without all of you, the work and all the success never been achieved.

ACKNOWLEDGEMENT

I would like to thanks to my supervisor, Madam Syamimi Binti Shamsudin for helping, guide and encourage me to complete finish this design and development of legged robot. Without guide and support from her, I could not finish this design and development successfully. Then I would like to thanks to all my friends especially to my BMFA classmate that always support and advice me during facing a problem and help me in certain task to finish my project. And special thanks to my parent who always encourage me to finish my study in degree level and they always be my backbone in what matter that I involve to get successful. And last but not least, thank to everyone who directly or indirectly involve in my project until complete.

TABLE OF CONTENT

Abstra	ık	i
Abstra	ict	ii
Dedica	ation	iii
Ackno	owledgement	iv
Table	of Content	V
List of	Table	Х
List of	Figure	xi
1.0	INTRODUCTION	1
1.1	Background	1
1.2	Problem statement	2
1.3	Project Aim and Objectives	3
1.4	Scope	3
1.6	Expected Outcomes	3
1.5	Project Planning	4
1.7	History of Robots	6
1.8	Application of Mobile Robots	6
1.8.1	Mobile Robot in Industry	7
1.8.2	Mobile Robot in Hazardous and Dangerous Environment	8
1.8.3	Mobile Robot in Exploration	8
1.8.4	Mobile Robot in Underwater	9
1.8.5	Mobile Robot in Space	9
1.9	Mobile Robots in Military	10
1.10	Military Legged Robot	11
1.10	Chapter Conclusion	12
2.0 LI	TERATURE REVIEW	13
2.1	Introduction	13

2.2	Robot Controller	14
2.2.1	PC Based	15
2.2.2	Microcontroller	16
2.2.2.1	PIC Microcontroller Family	17
2.2.2.2	2 PIC 16F Microcontroller	18
2.2.2.3 PIC17F and PIC18F Microcontroller		19
2.3	Motor	19
2.3.1	Basic of Motor Principle	20
2.3.2	Alternating Current (AC) Motor	20
2.3.3	Direct Current (DC) Motor	21
2.3.4	DC Brush Type Motor	22
2.3.5	DC Brushless Type Motor	24
2.3.6	Stepper Motor	25
2.3.7	Servo Motor	26
2.4	Sensor	28
2.4.1	Infrared Sensor	29
2.4.2	Tactile Sensor	30
2.5	Power Supply	31
2.5.1	Battery	31
2.5.2	Lead Acid Rechargeable Battery	32
2.5.3	Nickel Cadmium Battery	32
2.6	Software	33
2.6.1	Programming Software	33
2.6.1.1	Micro C Programming Software	34
2.6.1.2	2 MPLAB Programming Software	35
2.6.2	Circuit Design Software	36
2.6.2.1	Proteus PCB Software	37
2.6.3	Drawing software	38
2.6.3.1	Solid Work Drawing Software	38
2.6.3.2	2 AutoCAD Drawing Software	39
2.7	Material for Robot Structure	40

2.7.1	Stainless steel	41
2.7.2	Aluminum	42
2.8	Legged Robot	42
2.8.1	Design Consideration for Legged Robots	43
2.8	Similar Past Projects	46
2.8.1	Six Legged Wall-Climbing Robot by Zhang et al. 2008	46
2.8.2	Robot Characteristics	46
2.8.3	Result of Development of Six Legged Wall Climbing Robot	48
2.8.4	Impact on This Project	49
2.8.5	Development of Teleoperated Six-legged Walking Robot for Mine	49
	Detection and Mapping of Mine Field by Nonami et al. 2000	
2.8.6	Robot Characteristics	50
2.8.7	Impact on This Project	51
2.9	Chapter Conclusion	52
3.0	METHODOLOGY	53
3.1	Introduction	53
3.2	Project Flow Chart	53
3.3.1	Research Stage	54
3.3.2	Methodology	55
3.3.3	Design and Development Stage	55
3.3.4	Testing Stage	56
3.3.5	Result and Discussion	57
3.4	Resources for Literature Review	58
3.5	Material for Robot based and Structure	58
3.5.1	Band Saw Metal Cutting	59
3.5.2	Drill Machine	59
3.5.3	Bending Machine	60
3.5.4	Lathe Machine	60
3.6	Software Tools for the Project	61
3.6.1	Solid Work 2009 Software	61

3.6.2	Express PCB Software for Electrical Circuits	65
3.6.3	MPLAB Software for Programming	67
3.7	Chapter Conclusion	71
4.0	CONCEPTUAL DESIGN	72
4.1	Introduction	72
4.2	Conceptual Design	72
4.3	First Design	73
4.3.1	Advantages	76
4.3.2	Disadvantages	77
4.4	Second Design	77
4.4.1	Advantages	80
4.4.2	Disadvantages	81
4.5	Third Design	81
4.5.1	Advantages	84
4.5.2	Disadvantages	85
4.6	Design Selection Using Pugh Method	85
4.7	Development	86
4.7.1	Movement System Design	87
4.7.2	Mechanical Structure	89
4.7.2.1	Base	89
4.7.2.2	2 Legs	91
4.7.2.3	3 Motor Brackets	93
4.7.2.4	Mechanical Assembly: Robot Base	94
4.7.2.5	5 Mechanical Assembly: Legs	96
4.7.2.6	6 Mechanical Assembly: Bracket and Motor Assemble	97
4.7.2.7	Mechanical Assembly: Assemble of All Part	98
4.7.3	Electrical Circuit	99
4.7.3.1	SK 40 C Circuit	100
4.7.3.2	2 SC80A Servo Controller	101
4.7.3.3	B Power Regulator Circuit	113

4.7.4	Programming Algorithm	104
4.8	Chapter Conclusion	106
5.0	TESTING, RESULT AND DISCUSSION	107
5.0	Introduction	107
5.1	Field for Testing	107
5.2	Result and Discussion	108
5.2.1	Movement Testing Result	108
5.2.2	Result and Discussion for Floor Surface	109
5.2.3	Result and Discussion for Grass and Sand Surface	110
5.2.4	Overall Discussion for the Robot	111
5.3	Conclusion	112
6.0	CONCLUSION AND RECOMMENDATION	113
6.1	Project Summary	113
6.2	Problem Encountered	113
6.2	Recommendation for Future Work	114

116

REFERENCES

APPENDIX

LIST OF TABLE

4.1	Final Pugh Chart to Obtain the Best Design	86
4.2	Forward Algorithm for Moving Forward	89
4.3	Assembly Process of Base.	95
4.4	Assembly Process of Legs.	97
4.5	Assembly Process of Servo Motor and Bracket	98
4.6	Assembly Process Become Complete Robot	99
4.7	Function Label of SK 40C	101
4.8	SC08A Function	102

LIST OF FIGURES

1.0	Gantt chart for PSM	4
1.1	Gantt chart for PSM	5
1.2	Automated Guide Vehicle (Factronics.com)	7
1.3	Pioneer Robot (Stephanie and Shelton 2003)	8
1.4	Telepresence Remotely Operated Vehicle (TROV)	9
	(Stephanie and Shelton 2003)	
1.5	Sojourner (Stephanie and Shelton 2003)	10
1.6	Scout Robot (March 1986)	11
1.7	Big Dog Military Robot (NY Times Co 2010)	12
2.1	Example of an Autonomous Robot for Military Purpose (Boyd 2009)	14
2.2	Example of welding robot	16
2.3	Example of PIC Microcontroller (Cytron Technologies.com)	18
2.4	Type of motor	19
2.5	Basic Motor Construction with Internal Design (Yusoff 2009)	20
2.6	Example of AC motor (cprmotor.com)	21
2.7	Typical DC Motor Construction (Northwestern University	22
	Mechatronics Design Laboratory)	
2.8	Simple Two-Pole Brushed DC motor (Condit 2004)	23
2.9	An Example of Brushless Motor (Cytron Technologies)	24
2.10	Electronic amplifier or drive which can also be used to do the	25
	commutation in response to low-level signals from an optical or	
	hall-effect sensor (Yusoff 2009)	
2.11	Example of the Stepper Motor (made-in-china.com)	26
2.12	Wires for the servo motor, black (ground), red (power),	27
	yellow (PWM)	
2.13	The Part in the Servo Motor	28

2.14	Servo Motor (Cytron.com)	28
2.15	Example of PIR Sensor (Advance robotics 2010)	30
2.16	Principle Design and Physical Implementation of a Whisker Sensor	30
	(Nehmzow 2003)	
2.17	Example of Sealed Lead-Acid Battery (parts-express.com)	32
2.18	Example of Nickel Cadmium Battery (ESP Special	33
	Batteries Ltd 1988)	
2.19	Example of Micro Compilers Software (ZDnet)	35
2.20	Main Window for MP Lab Software (Suhaila 2009)	36
2.21	Example of circuit diagram in Proteus Software	37
	(Proteus Software)	
2.22	Example of Solid Work Drawing (Murray 2000)	39
2.23	Example of AutoCAD Drawing Software (Brothersoft.com)	40
2.24	Example of Omnidirectional Robot Using Stainless Steel as a	41
	Chassis (Heartlessg 2008)	
2.25	An Example of a Robot Using Aluminum as a Chassis	42
	(ArrickRobotics.com)	
2.26	GE Quadruped (Truckblog 2007)	43
2.27	Hexapod Robot (Active Robots Ltd. 2003)	44
2.28	Three Degree of Freedom Construction (The University	45
	of Iowa 2010)	
2.29	Example of Six Legs Gait (Zhang et al. 2008)	45
2.30	Six Legged Wall-Climbing Robot Degree of Freedom	47
	(Ming Zhong et al. 2008)	
2.31	Arrangement of Legs (Ming Zhong et al. 2008)	47
2.32	Moving Gait of Mobile System (Ming Zhong et al. 2008)	48
2.33	Type of robot working condition (Ming Zhong et al. 2008)	49
2.34	Six-legged mine detecting robot COMET- 1 (Nonami et al. 2000)	50
3.1	Flow Chart of the Overall Project	54
3.2	Flow Chart for Design and Development Stage	56

xii O Universiti Teknikal Malaysia Melaka

3.3	Flow Chart for Testing Stage	57
3.4	Band Saw Metal Cutter Machine (Focus Technology Co. Ltd. 2010)	59
3.5	Drill Machine (rmtcoimbatore.com 2007)	59
3.6	Bending Machine (Yusoff 2009)	60
3.7	Lathe Machine (Focus Technology Co. Ltd. 2010)	60
3.8	Solid Work 2007 icon at desktop	62
3.9	Selecting new document in Solid Work	62
3.10	Solid Work drawing tool	63
3.11	Selecting drawing plane	63
3.12	An example of Solid Work 2009 Interface for User	64
3.13	Express PCB Icon	66
3.14	Environment of Express PCB	66
3.15	MPLAB Software Icon	67
3.16	Section for Creating New Project	68
3.17	Create a New Document	68
3.18	Selection Device	69
3.19	Language Tool Suite	69
3.20	Project Name Section	70
3.21	Add File Section	70
3.22	Project Summary	71
4.1	First Design of Legged Robot	74
4.2	Location of thigh and calf for first design	75
4.3	Location of Degree of Freedom for first design	76
4.4	Arrangement of Leg for first design	77
4.5	Second Design of Legged Robot	78
4.6	Location of thigh and calf for second design	79
4.7	Location of Degree of Freedom for second design	80
4.8	Arrangement of Leg for second design	82
4.9	Third Design of Legged Robot	83
4.10	Location of Tight and Calf for Third Design	83

4.12	Location of Thigh and Calf for Third Design.	84
4.11	Location of Thigh and Calf for Third Design	86
4.13	Design of the Base.	90
4.14	Process Cutting of Acrylics using Laser Cutting Machine.	90
4.15	Complete Base.	91
4.17	Calf after Cutting Process and Thigh after Cutting Process.	91
4.16	Drawing of Calf and Drawing of Thigh	92
4.18	Attachment between Calf and Thigh.	92
4.19	Drawing of Bracket.	93
4.20	Servo Motor Bracket	94
4.21	SK 40C (www.cytron.com)	100
4.22	SC08A Servo Controller (www.cytron.com)	102
4.23	Design of Power Regulator Circuit	103
4.24	Power Regulator Circuit	104
4.25	Declaration Function in Programming.	105
4.26	Main Programming.	105
4.27	Complete Product	106
5.1	Surface Consist of Grass/Sand and Floor.	108
5.2	Distance between Two Legs during Movement	109
5.3	Movement of Up and Down of the Legs	109
5.4	Robot Move at the Floor Surface	110
5.5	Robot at the Grass Surface	110
5.6	Robot is fall during Movement	111
5.7	Robot that use by Edmonton Police Service (Flynn, 2010)	112

CHAPTER 1 INTRODUCTION

The first chapter consists of background study, problem statement of the project, project aim and objective, research, scope, project planning, expected outcomes and chapter conclusion.

1.1 Background

Manufacturing is a wealth-producing sector where it helps the economic on some of the major country in the world. It produces a finish-good product or service that can be use by human kind. Discussion about the manufacturing will have people relate it with use of machines and tools. In earliest century, the finish-good of service and product are produce manually handle by artisan. But nowadays, manufacturing world is conquering by machine that function semi-auto and fully automatics. Application of robots also involve in manufacturing especially using mobile robot.

Most of the robot is designed to be helping hand task. It help human in work that would be difficult, unsafe, assembly product, inspect part, welding and many more.

Mobile robots now are use in many departments. As an example, mobile robot call Automated Guide Vehicle is use in factory. It can carry and supply an equipment and tool to operator based on programming that install and applied in it system. In hospital, mobile robots are use in serving medicine to patient.

At this moment we can conclude that application of mobile robot are used worldwide in many sector.

1.2 Problem Statement

There is a need for a type of vehicle of platform that can travel in difficult terrain where an existing vehicle cannot go. Legged robots are very useful in tasks such where conventional wheels have difficulty to perform. Wheel excel on prepare surface such as rails and roads, but perform poorly when the terrain is soft and uneven. This problem be crucial when application of robot is applied in military purpose where uneven terrain exists (Raibert 1986).

The developments of new system or products are usually born out of occurring problems. It also happens in development of mobile robot especially for military purpose. The use of mobile robot in military is to replace human for dangerous and hazardous environment such as bomb disposal task. In military, there a lot of environment and uneven terrain where soldier have to work with or without machine. Most of the military machine or transportation available use wheel as locomotion (ROBOTS 1986).

For the case of military robots, locomotion is the most important aspects. A lot of environment and uneven terrain must robot through. The problem that occurred is the need of machine that can perform at all-terrain. It is because; most military task is at allterrain that consists of hard ground and soft ground. Sometimes at this type of ground it consists of grass, sand/soil and muddy. This can occurred slip problem. So suitable

locomotion is important aspect to considerate. When the need of that kind of vehicle appears in military, the mobile aspect must be analyzed (Raibert 1986).

Through research and development for this project, this problem will overcome and can give a significant contribution to the user especially to the military development in Malaysia.

1.3 Project Aim and Objective

This project aims to produce an efficient and suitable locomotion of an all-terrain robot platform to carry out military operation using the legged motion.

To fulfill the project aim, there are three objectives have been line up and must be achieved:

- a) To design and develop the mechanical structure of legged motion platform of a mobile robot suitable for terrain grass, sand and floor for military purpose.
- b) To develop the electrical and electronic circuit embedded with PIC16F877A as the microcontroller.
- c) To interface between the hardware and programming software in order for robot to successfully perform its specified tasks.

1.4 Scope

This project will focus on the design and development of a legged robot. It also includes the programming of the PIC microcontroller. Design and development of the structure and circuit for this robot will covered in this project. The application of the robot at allterrain that consists of grass, sand and soil will carry out in this project specifically for an autonomous robot. Robot design for terrain that consists of water is not covered in this project.

1.5 Expected Outcomes

Through the research and development carried out research, the expected outcome is:

- a) Achieved the project aim and objective.
- b) Develop robot using legged locomotion.
- c) The robot can function in it's defined of environment scope.

1.6 Project Planning

The chart shown in figure 1.0 and figure 1.1 illustrate the planning work for this project.

Figure 1.0: Gantt Chart for PSM 1

	DEVELOPMENT OF ALL.	1.5		NR.	050	TU	S ING	LEC	GE	DM	P/12		OILE	marg.		(FL	TPO	SE
Activities Used and Date		1 2 JAN	AN	3	4	5	FEI	B	8	9 1 M	10 MAC	11	12	13 A	14 PRIL	15	16	REMARK
Panning Work				17.10	21.0	1	T 13	16 25	1) P		C _ 18	15 - 20	21 - 27	1 - 1		11-14	9 - 14	
	Design/development circuit		4									_						
PROJECT	Design/development mechanical										_	-				_		all design and development, and material selection will b discuss with the supervisor and technician
	Programming construction	7	_	_		-												
	Assembly all mechanism	1	_	_	_				_	0			_			_		
	Troubleshcoting		_	_					_		_							
	Teating and gather result		_	_		_		_				_						
	Chapter 4 : Design and Development				in the	-	24											
REPORT	Chapter 5: Result and Disscusion									-								
REFARATION	Chapter 6 : Condusi as Recommidation	1		_								_	_					
	Checking section for all chapter	=		_					_			_		_				
SM2 and	ort granation															-		
\$1.62 mm	sentation	-	-	-		-	-		-		-					100	-24	

Figure 1.1: Gantt Chart for PSM 2

C Universiti Teknikal Malaysia Melaka