

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CONTROL SYSTEM DESIGN FOR TEMPERATURE ALERT SYSTEM

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotic and automation) with Honours

by

NOOR HISHAM BIN MOHAMAD SAID B050810184

FACULTY OF MANUFACTURING ENGINEERING 2011

C Universiti Teknikal Malaysia Melaka

M	ALAYSIA 4
KUINS	ELLAKA
EITI TE	
ABA	Nn

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TAJUK: Control System Design for Temperature Alert System				
SESI I	PENGA	JIAN: 2010/11	Semester 2	
Saya	NOC	R HISHAM BIN	MOHAMAD SAID	
meng Perpi kegui	gaku m ustaka naan s	nembenarkan te an Universiti Te eperti berikut:	esis (PSM/Sarjana/ eknikal Malaysia N	'Doktor Falsafah) ini disimpan di Ielaka (UTeM) dengan syarat-syarat
1. Te 2. Pe ui 3. Pe ar 4. *S	 Tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi. *Sila tandakan (√) 			
	_		(Mengandungi	
	Ш	SULIT	atau kepenting AKTA RAHSIA R	maklumat yang berdarjah keselamatan gan Malaysia yang termaktub di dalam ASMI 1972)
		SULIT TERHAD	atau kepenting AKTA RAHSIA RA (Mengandungi I oleh organisasi)	maklumat yang berdarjah keselamatan gan Malaysia yang termaktub di dalam ASMI 1972) maklumat TERHAD yang telah ditentukan /badan di mana penyelidikan dijalankan)
		SULIT TERHAD TIDAK TERHA	atau kepenting AKTA RAHSIA R (Mengandungi I oleh organisasi)	maklumat yang berdarjah keselamatan gan Malaysia yang termaktub di dalam ASMI 1972) maklumat TERHAD yang telah ditentukan /badan di mana penyelidikan dijalankan)
		SULIT TERHAD TIDAK TERHA	(Mengandungi atau kepenting AKTA RAHSIA R (Mengandungi I oleh organisasi)	maklumat yang berdarjah keselamatan gan Malaysia yang termaktub di dalam ASMI 1972) maklumat TERHAD yang telah ditentukan /badan di mana penyelidikan dijalankan) Disahkan oleh:
	Ц П П (Т)	SULIT TERHAD TIDAK TERHA ANDATANGAN P	AKTA RAHSIA RA (Mengandungi I oleh organisasi D	maklumat yang berdarjah keselamatan gan Malaysia yang termaktub di dalam ASMI 1972) maklumat TERHAD yang telah ditentukan /badan di mana penyelidikan dijalankan) Disahkan oleh: (TANDATANGAN PENYELIA)
	Alam NO 1 TAMA 75460 MELA	SULIT TERHAD TIDAK TERHA ANDATANGAN P at Tetap: 5 JALAN DR 2, AN DUYONG RIA 0 MELAKA, KA.	AKTA RAHSIA RA (Mengandungi I oleh organisasi D	maklumat yang berdarjah keselamatan gan Malaysia yang termaktub di dalam ASMI 1972) maklumat TERHAD yang telah ditentukan /badan di mana penyelidikan dijalankan) Disahkan oleh: (TANDATANGAN PENYELIA) Cop Rasmi:

DECLARATION

I hereby declare that this report entitled "Control System Design for Temperature Alert System" is the result of my own research except as cited in the references.

Signature	:	
Author's Name	:	Noor Hisham bin Mohamad Said
Date	:	19 MAY 2011

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree in Bachelor of Manufacturing Engineering (Robotic and Automation). The members of the supervisory committee are as follow:

(Madam Nur Aidawaty Binti Rafan)

Main Supervisor Faculty of manufacturing Engineering

ABSTRAK

Dalam sistem kejuruteraan suhu merupakan pembolehubah fizikal yang perlu dipantau dan dikawal. Sebagai contoh, sensor suhu digunakan di gedung-gedung, kilang pemprosesan kimia, mesin, komputer, kenderaan, dan lain-lain. Suhu yang amat tinggi boleh merosakkan kualiti dalam sesuatu sistem, sedangkan suhu rendah pula menyebabkan pembakaran dalam masa yang lama. Dengan meningkatkan kualiti sistem kawalan boleh mengawal suhu dengan mencapai bacaan yang memuaskan. Projek ini lebih tertumpu kepada sistem kawalan reka bentuk dengan menggunakan simulasi pada perisian MATLAB. Kaedah yang digunakan adalah berdasarkan rekaan pengawal PID, yang meningkatkan konsisten ralat dan tindak balas sementara secara bebas. Projek ini juga melibatkan analisis unsur-unsur sistem kawalan dengan membezakan nilai konsisten ralat dan tindak balas sementara (masa puncak, masa naik, masa penetapan) hasil daripada graf simulasi daripada input unit langkah untuk pampasan dan terpampas sistem. Satu daripada objektif reka bentuk sistem kawalan adalah proses penstabilan oleh itu, analisis sistem diteruskan dalam istilah kestabilan supaya mencapai objektif dengan mencari julat (K) supaya sistem itu akan beroperasi samada system stabil, tidak stabil atau hampir-hampir stabil supaya proses yang dilakukan akan beroperasi dalam keadaan yang sebaik mungkin

ABSTRACT

In many engineering systems temperature constitutes an important physical variable that needs to be monitored and controlled. For example, temperature sensors are present in buildings, chemical processing plants, engines, computers, vehicles, etc. A very high temperature may destroy the qualities of the some system, while a low temperature may result in long burning time. By enhancing quality of control system can make the controlled temperature reach a satisfactory point. This project will focus primarily on the design control system by using simulation on MATLAB software. The method is based on the designing the PID controller, which improving the steady-state error and transient response independently. This project also involves analysis the elements of control system by differentiate the value of steady-state error and the transient response (peak time, rise time, settling time) from the simulation graft of unit step input for the uncompensated and compensated system. The one objective of control system design is process stabilization so that the analysis of the system will continue in term of stability to achieved the objective by finding the range of the gain (K) in the systems so that, the system will operate either stable, unstable or marginally stable in order to processes operates in the best possible way.

DEDICATION

I dedicate this PSM thesis to my beloved parents, my lovely brothers and sisters, friends and colleagues, not forgot UTeM's lecturers.

ACKNOWLEDGEMENT

In the name of Allah, invocation and greetings to adoration of Nabi Muhammad (S.A.W.), thanks to God because giving me strength and patience in finishing this final year project and thesis writing on time. Alhamdulillah. Firstly I would like to express my appreciation to my supervisor Puan Nur Aidawaty Rafan for her guidance, advice and continuous encouragement in process of completing my project successfully. Besides that, a lot of cooperation to all staff and officer at Manufacturing Lab that help me had done my experiment. I would also want to express my thankfulness to my beloved parents for never ending support, advice and encouragement since childhood until now. May your love and support will never be gone until the end of my life. For UTeM's lecturers who have taught me, thank you for giving me precious and valuable knowledge. For my friends and my classmates, thanks for your cooperation, support and help throughout these 3 years in UTeM. Thank you so much.

TABLE OF CONTENT

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Content	v
List of Tables	x
List of Figures	xi
List of Abbreviation	XV

1. INTRODUCTION

1.1	Background	1
1.2	Problem Statement	2
1.3	Project Objective	3
1.4	Project Scope	4
1.5	Project Planning	5

2. LITERATURE REVIEW

2.1	Introduction	7
2.2	Temperature Sensor	7
2.2.1	Selecting a Temperature Sensor	8
2.2.2	Thermocouple Temperature Sensor	8
2.3	Time Response	10
2.3.1	Natural Frequency	12
2.3.2	Damping Ratio	12
2.3.3	Underdamped Second-Order Systems	13
2.4	Stability System	16
2.5	Steady-state Error	17

2.5.1	Application to Stable Systems	18
2.5.2	Evaluating Steady-State Error	18
2.5.3	Sources of Steady-State Error	19
2.6	Temperature Control	20
2.6.1	Ideal Integral Compensation (PI)	20
2.6.2	Ideal Derivative Compensation (PD)	21
2.6.3	Proportional Integral Derivative (PID)	22
2.7	Computer Aided Design	23
2.7.1	MATLAB Software	24
2.8	Temperature Control Application by means of a	25
	PIC16F877 Microcontroller	
2.8.1	Introduction	25
2.8.1.1	The Heat Control System	25
2.8.1.2	Input Layer	26
2.8.1.3	Output Layer	27
2.8.2	Control Methods	29
2.8.2.1	Stages of Digital PID Controller Design	29
2.8.2.2	Stages of Fuzzy Controller Design	30
2.8.3	Control Program	32
2.8.4	Experimental Results	33
2.8.4.1	Result of PID Control	33
2.8.4.2	Result of Fuzzy Control	34
2.8.5	Conclusion	35

3. METHODOLOGY

3.1	Introduction	36
3.2	Project flow planning	36
3.3	Literature Stage	46
3.4	Experiment: At Machining Process (Press Drill Machine)	38
3.5	Design Stage	38

Comparison and Analysis Stage	39
Tool and Equipments	39
Thermocouple type –K	40
Vernier Lab Pro	40
Logger Pro 3	41
Workpiece for Experiments	41
	Comparison and Analysis Stage Tool and Equipments Thermocouple type –K Vernier Lab Pro Logger Pro 3 Workpiece for Experiments

4. DESIGN AND DEVELOPMENT

4.1	Introduction	43
4.2	Conceptual Design	43
4.2.1	Software Design	44
4.2.2	Importing data	44
4.2.3	Building the Block Diagram	48
4.2.3.1	Block diagram representation of control systems	49
4.2.3.2	Control system operation	50
4.2.4	Designing PID Controller	51
4.2.4.1	MATLAB programming for design PID Controller	52
4.2.5	Static Error Constants	54
4.2.5.1	System Type	55
4.2.5.2	MATLAB Programming for Steady-state Error	56
4.2.6	Stability Design of the system	56
4.2.6.1	Generating a Basic Routh Table	57
4.2.6.2	MATLAB Programming for analysis the stability by using	59
	RH Table	

5. RESULT AND DISCUSSION

5.1	Introduction	60
5.2	Project Finding	60
5.3	Experimental for This Project	61
5.4	Experiment by using Aluminum Material	62

5.4.1	Transfer Function of the System (Aluminum)	62
5.4.2	Block Diagram of the System (Aluminum)	63
5.4.2.	1 MATLAB Command to find the Transfer Function	64
	(Aluminum)	
5.4.2.	2 Reduction of the Block Diagram (Aluminum)	64
5.4.3	Controller of the System (Aluminum)	65
5.4.4	Steady-state Error of the System (aluminium)	73
5.4.5	Characteristics between Uncompensated, PD and PID	76
	(Aluminium)	
5.4.6	System Stability of Aluminium	77
5.5	Experiment by using Mild Steel Material	82
5.5.1	Transfer Function of the System (Mild steel)	82
5.5.2	Block Diagram of the System (Mild steel)	83
5.5.3	Controller of the System (Mild steel)	83
5.5.4	Steady-state Error of the System (Mild steel)	86
5.5.5	Characteristics between Uncompensated, PD and PID	89
	(Mild Steel)	
5.5.6	Stability of the System of Mild Steel	90
5.6	Experiments to Measure Car Engine Block	92
5.6.1	Transfer Function of the System (Car Engine Block)	92
5.6.2	Block Diagram of the System (Car Engine Block)	93
5.6.3	Controller of the System (Car Engine Block)	93
5.6.4	Steady-state Error of the System (Car engine block)	96
5.6.5	Characteristics between Uncompensated, PD and PID	99
	(Car engine block)	
5.6.6	Stability of the System of Mild Steel	100
6. CO	NCLUSION AND RECOMMENDATION	
6.1	Conclusion	102
6.1.1	Limitation	103

6.2 Recommendation and Future Work 103

REFERENCE

APPENDIX

А	Data for Temperature Reading	107
В	MATLAB Programming	110

LIST OF TABLES

2.1	Temperature Sensors	8
2.2	Test waveforms for evaluating steady-state errors of position control	17
	systems	
4.1	Correlation k_p , k_i and k_d to the characteristic of the system	51
4.2	Relationships between input, system type, static error constants, and	56
	steady-state errors	
4.3	Initial layout for Routh Table	57
4.3	Completed Routh table	58
5.1	Predicated characteristic for uncompensated, PD-, and PID-	76
	compensated system of Aluminum	
5.2	Routh table for Aluminum	78
5.3	Routh table for Aluminum with $K=-468.7$	79
5.4	Routh table for Aluminum with $K = -78.75$	79
5.5	Summary of pole location for Aluminum	80
5.6	Predicated characteristic for uncompensated, PD-, and PID-	89
	compensated system of Mild Steel	
5.7	Routh table for Mild steel with $K = -78.75$	90
5.8	Summary of pole location for Mild steel	91
5.9	Predicated characteristic for uncompensated, PD-, and PID-	99
	compensated system of CEB	
5.10	Routh table for Car engine block with $K = -67.5$	100
5.11	Summary of pole location for Aluminum	101

LIST OF FIGURES

1.1	The General Control System	2
1.2	Gantt chart for PSM 1	5
1.3	Gantt Chart for Overall Project PSM I and II	6
2.1	A thermocouple circuit	9
2.2	Comparison of thermocouple junction mounting	9
2.3	Step response for second-order system damping case	10
2.4	Second order system, pole plots and step response	11
2.5	Second-order response as a function of damping ratio	13
2.6	Second-order underdamped response specifications	14
2.7	Steady-state error	19
2.8	PI Controller	21
2.9	PD Controller	22
2.10	PID Controller	23
2.11	Block Diagram of the Control System	25
2.12	Heat Sensor and Measurement Amplifier	26
2.13	Crystal and Voltage Supply Connections	26
2.14	2-2R Ladder Scheme	27
2.15	Pulse Width Modulator	27
2.16	Triac Trigering Circuit	28
2.17	Circuit of the LCD Driver	29
2.18	Block Diagram of a Closed Loop Digital Controller	30
2.19	Membership Functions for E	31
2.20	Membership Functions for Offset Change of Heat	31
2.21	Membership Functions of the Variable That Adjusts the Fan's	32
	Speed	
2.22	Flowchart of the control program	32

2.23	Graph of System's heating	33
2.24	PID Control Result	34
2.25	Fuzzy Control Result	35
3.1	Methodology flow chart	37
3.2	Thermocouple Type K	40
3.2	Vernier Lab Pro	40
3.4	Vernier Logger Pro	41
3.5	Aluminium hollow box and mild steel bar	42
4.1	Current Window in MATLAB	45
4.2	Import Wizard window in MATLAB	46
4.3	Array Editor Window in MATLAB	47
4.4	Plotting option in MATLAB	47
4.5	Transfer function of plotting data	48
4.6	Temperature Control system	49
4.7	Block Diagram representation of a Temperature Control System	51
4.8	Programming for uncompensated system	52
4.9	Programming for PD-compensated system	53
4.10	Programming for PID-compensated system	53
4.11	Transfer function	55
4.12	Programming for Steady-state error	56
4.13	Equivalent closed-loop transfer function	57
4.14	Programming for stability system	59
5.1	Experiment at Press Drill machine	61
5.2	Graft Temperature VS Time for Aluminum	62
5.3	Block diagram of the total system for Aluminum	63
5.4	MATLAB command of the total system for Aluminum (Transfer	64
	function)	

5.5	Transfer function of the total system for Aluminum	64								
5.6	Uncompensated feedback control system for Aluminum									
5.7	Root locus for uncompensated system of aluminum	66								
5.8	Coding to find Root locus for uncompensated system of aluminum	66								
5.9	Zoom view of Root locus for uncompensated system of aluminum	67								
5.10	Calculating the PD compensator zero for aluminum	68								
5.11	Root locus for PD-compensated system of aluminum	69								
5.12	Coding to find Root locus for PD-compensated system of aluminum	69								
5.13	Root locus for PID-compensated system of aluminum	70								
5.14	Coding to find Root locus for PID-compensated system of	71								
	aluminum									
5.15	Step responses for uncompensated, PD-, and PID-compensated	72								
	system of Aluminium									
5.16	Coding for steady-state error of uncompensated system (aluminum)	73								
5.17	Coding for steady-state error of PD-compensated system	74								
	(aluminum)									
5.18	Coding for steady-state error of PID-compensated system	75								
	(aluminum)									
5.19	Coding for analysis the stability by using RH Table (Aluminum)	77								
5.20	Pzmap for the stability system of Aluminum	80								
5.21	Pzmap for the unstable system of Aluminum	81								
5.22	Pzmap for the marginally stable system of Aluminum	81								
5.23	Graft Temperature VS Time for Mild steel	82								
5.24	Uncompensated feedback control system for Mild steel	83								
5.25	Coding for Uncompensated system of Mild steel	83								
5.26	Coding for PD-compensated system of Mild steel	84								
5.27	Coding for design PID-compensated system of Mild steel	84								
5.28	Root locus and Step Response of Uncompensated, PD- and PID-	85								
	uncompensated for Mild steel									
5.29	Coding for steady-state error of uncompensated system (Mild steel)	86								

5.30	Coding for steady-state error of PD-compensated system (Mild	87
5.31	steel) Coding for steady-state error of PID-compensated system (Mild steel)	88
5.32	Coding for analysis the stability by using RH Table (Mild steel)	90
5.33	Pzmap for the stable, unstable and marginally stable system of Mild steel	91
5.34	Graft Temperature VS Time for Car Engine Block	92
5.35	Uncompensated feedback control system for Car Engine Block	93
5.36	Coding for Uncompensated system for Car engine block	93
5.37	Coding for design PD-compensated system for Car engine block	94
5.38	Coding for design PID-compensated system for Car engine block	94
5.39	Root locus and Step Response of Uncompensated, PD- and PID-	95
	uncompensated for Car engine block	
5.40	Coding for steady-state error of uncompensated system (Car engine block)	96
5.41	Coding for steady-state error of PD-compensated system (Car engine block)	97
5.42	Coding for steady-state error of PID-compensated system (Car engine block)	98
5.43	Coding for analysis the stability by using RH Table (Car engine block)	100
5.44	Pzmap for the stable, unstable and marginally stable system of Car engine block	101

LIST OF ABBREVIATIONS

PC	-	Personal Computer
RTD	-	Resistance Temperature Detector
PID	-	Proportional Integrated Derivative
PD	-	Proportional Derivative
PI	-	Proportional Integral
DC	-	Direct Current
AC	-	Alternative Current
VB	-	Visual Basic
GUI	-	Graphical User Interface
I/O	-	Input Output
CPU	-	Central Processing Unit
CU	-	Control Unit
PWM	-	Pulse Width Modulator
IEEE	-	The Institute of Electrical and Electronic Engineers
ADC	-	Analog Digital Computer
CEB	-	Car Engine Block

CHAPTER 1 INTRODUCTION

1.1 Background

Temperature control is an important issue in many industrial processes, e.g., electricresistance furnaces, crystal ovens, and heating boilers/tanks/barrels for various chemical and metallic products. Such a thermal process usually shows an integrating response characteristic during the heating stage, and after rising up to the set-point temperature, it tends to behave in a stable manner given a certain heating range, due to air convection or radiation loss into the environment. The main control challenges for such processes are to avoid overheating (i.e., temperature overshoot) in the heating stage and to tightly maintain the set-point temperature against load disturbances and process/environmental variations. Furthermore, thermal processes typically have slow time constants and long time delay, causing difficulties to control-system design. (Stanley M.Shinners, 1998)

The design procedure for designing a control system is an orderly sequence of steps. Good engineering design is interdisciplinary and requires that the engineer first thoroughly understand the customer's requirements, the defined control system specifications, the environment that the control system will operate in, the available power, the schedule that it must be built in, and the available budget to do the job. Other considerations are reliability and maintainability which may dictate the kind of motor to use (i.e., electric motor or hydraulic motor). (Stanley M.Shinners, 1998)

The general control system as shown in figure 1.1 can be divided into the controller and the machine. The controller can be divided into the control laws and the power converter. The machine may be temperature bath, a motor, or as in the case of a power supply, an inductor/capacitor circuit. The machine can also be divided in two: the plant and the feedback device(s). The plant receives two types of signals: a controller output from the power converter and the one or more disturbances. Simply put, the goal of the control system is to drive the plant in response to the command while overcoming disturbance. (George Ellis, 2000)

Figure 1.1: The General Control System (George Ellis, 2000)

1.2 Problem Statement

The most important parameter of some system is the temperature. For example, the Catalyst regeneration process regenerates the catalyst of a chemical reactor. An important variable, which is to be controlled, is the temperature of catalyst bed. A very high temperature may destroy the qualities of the catalyst, while a low temperature may result in long burning time. So, when the control system elements are introduced, the system become more stable by maintaining the temperature reaches a satisfactory point.

Temperature is one of the most frequently used parameters in process measurements in industry. There are many controllers can be used and one of the controller is PID. Mostly heater using an on-off method of it was the simplest form on control. When the heater is hotter than the set point temperature the heater is switch off completely. Based on this method, the temperature is fluctuate and caused the temperature is not constant. So based on this problem PID method has been used. PID controller provides a close loop concept in system. This close loop system will ensure that there is no error at the output. It will fix the error in order to reach the set point value. Three terms in this controller will provide a good performance for the output. Each of this term has its own contribution for the system. When these three terms is combining, the system will perform more efficient and precise.

Once the system reached operating temperature, all we worried about was overheating. Computers used to control system performance through all stages of temperature, maintaining time constant and stability of system, sensitivity, accuracy and transient response. When using PID controller, user can be easily tuning according to the system requirement. Tuning is important in order to achieved good performance of the system. If problem occurred or the system requirement change, user can set the new tuning easy and faster.

1.3 Project Objective

- i. Design the PID controller of Temperature Control System using the simulation in MATLAB software according to the system requirement.
- ii. Reduce the steady-state error of the system.
- iii. Analysis the performance of designed control system such as the stability of the system by adjusting the gain, K either the system is stable, unstable or marginally stable.

1.4 Project Scope

This project will focus primarily on the design control system, so that processes operate in the best possible way. Generally, complete control system may have controller and machine. The controller will be used for this project is PID system that improves the steady-state error and transient response independently. Then differentiate the steadystate error for the uncompensated and compensated system for each process.

Once the PID controller are completely design, derive a proportional term, an integration term and a derivative term from the resulting transfer function of the PID compensator.

The improvements are focused on devising a new control technique that improves the system behavior against any kind of disturbances by study the performance which greatly improved the stability and control accuracy of the Temperature Alert System. The performance of a control generally specified in terms of stability, steady-state error and transient response.

Project Planning 1.5

	C	ON.	TRO	LSY	STE	EM E	DESI	GN :	FOR	TEI	MPE	RAT	URE	AL	ERT	SYS	STEN	M		
	Week and Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16			
Activiti	es		JULY	Y		AU	GUST	Γ	$\overline{}$	SEP	TEM	BER	\sim	0	сто	BER			REMARK	
		12_16	19_23	326_30	2_6	9_13	16 _ 20	23 _ 27	30_3	610	13 _ 17	20_24	27_1	4_8	11_15	18 _ 22	25_29			
	Title selection																			
	Preliminary reseach work																	All reading s	ection,notes tal	king,
PROJECT																				
	Control system design																	and method	selection will be	e
STUDT		<u> </u>	<u> </u>	<u> </u>	<u> </u>															
	Similar project, journal and etc.																	discuss wit	h the supervisor	r
	Summary of reseach paper					☀												Summary of r	eseach paper ar	nd project
																		proposal subr	nition date on 11	August 2010
PROJECT	Project proposal					*														
		<u> </u>							-									Progress repo	ort and logbook	will be
TASK	Progress report								*			₩		₩		₩		submitted eve	ery 2 weeks	
		<u> </u>						-				-		-		-				
	Logbook	<u> </u>						*				*		*		*				
	Chapter 1 : Introduction											*						Chapter 1 subi	mition on 22 Se	ptember 2010
REPORT	Chapter 2 : Literature review											₩						Chapter 2 sub	mition on 22 Se	ptember 2010
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>						-	<u> </u>	<u> </u>				
PREPARATION	Chapter 3 : Methodology	I	 	 										*				Chapter 3 pre:	sentation on 22	September 201
PSM 1 repo	PSM 1 report preparation																			
PSM 1 presentation																				

Figure 1.2: Gantt chart for PSM 1

C Universiti Teknikal Malaysia Melaka