

### UNIVERSITI TEKNIKAL MALAYSIA MELAKA

### AUTOMATIC PINEAPPLE PEELER MACHINE USING PLC

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Robotics and Automation) with Honours.

by

### MAZALINDA BINTI MAZLAN

# FACULTY OF MANUFACTURING ENGINEERING 2011





UNIVERSITI TEKNIKAL MALAYSIA MELAKA

### BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Automatic Pineapple Peeling Machine Using PLC

SESI PENGAJIAN: 2010/2011 Semester 2

Saya MAZALINDA BINTI MAZLAN

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. \*\*Sila tandakan ( $\sqrt{}$ )

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

| Ø | TIDAK TERHAD |
|---|--------------|
|   |              |

TERHAD

SULIT

Alamat Tetap:

No2011, Blok1 Prkt 2,

Felda Air Tawar 5,

81920 Kota Tinggi, Johor.

Tarikh: 19 Mei 2011

Disahkan oleh:

IA PSM

SYAMIMI BINTI SHAMSUDDIN Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

Tarikh: 19 Mei 2011

\*\* Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

### APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfilment of the requirements for the Degree in Bachelor of Manufacturing Engineering (Robotic and Automation) with Honours. The member of the supervisory committee is as follow:

.....

Supervisor

C Universiti Teknikal Malaysia Melaka

### DECLARATION

I hereby, declared this report entitled "Pineapple Peeler Machine using PLC" is the results of my own research except as cited in references.

| Signature     | ·        |
|---------------|----------|
| Author's Name | <u>.</u> |
| Date          | ·        |



### ABSTRAK

Programming Logic Controller (PLC) merupakan pengawal di dalam projek ini. Ia digunakan untuk mengawal keseluruhan operasi di dalam Mesin Pemotong Kulit Nanas dan ianya merupakan komponen utama projek ini dan akan dihubungkan dengan motor untuk menggerakkan mesin. Mesin ini dilengkapi dengan sensor sebagai langkah keselamatan. Untuk memenuhi tugasannya, terdapat beberapa sasaran yang perlu dipenuhi. Sasaran utamanya adalah untuk mencipta and membangunkan struktur mekanikal yang sesuai dengan tugasan mesin pemotong kulit nanas. Keyence merupakan software untuk PLC. Berdasarkan kepada kegunaannya, kajian yang terperinci perlu dijalankan untuk menentukan bahan, fabrikasi, actuator dan sensor yang terbaik. Setelah itu, carta aliran poses bagi menyiapkan tugasan dan penentuan rekabentuk ditentukan.

### ABSTRACT

The idea of this project came a couple of years ago as to why there are no peeling machine specifically to peel the pineapple skin in a short time. Hence, this project which is aimed to design and develop a machine that will peel pineapple skin automatically. The Keyence Programming Logic Controller (PLC) is the controller in this machine. It is used to control the whole operation in the Pineapple Peeler Machine and is interfaced with a motor to run the machine. The machine is equipped with sensor for safety. The PLC is programmed with Ladder Builder software to carry out the ladder diagram programming. Thorough research had been conducted to determine the best material, mechanical fabrication, actuator and sensor for this project. Critical aspects of this machine are the hygienic factor and the electrical and mechanical components. Best machine design of rectangular shape is chosen due to ease of assembly. Based on testing result, the project is successful because the machine can peel the pineapple peel smoothly 'eyes'.

### ACKNOWLEDGEMENT

I would like to thank to Faculty of Manufacturing Engineering of UTeM for giving me an opportunity to undergo this final year project as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotic & Automation) with Honours.

A very special thank I dedicated to my supervisor, Pn Syamimi binti Shamsuddin, Lecturer of Faculty of Manufacturing Engineering (Robotic & Automation) who is supervised and guided me during the final year project. Not forgotten, to other Fakulti Kejuruteraan Pembuatan (FKP) lecture that give their support, co-operation and also shared knowledge with me on my Projek Sarjana Muda (PSM) title. I also want to express my appreciation to my panel, En. Khairol Anuar bin Rakiman for providing time to judge me for this project during the presentation session and giving me advices and comments to improve my skills and performance.

# TABLE OF CONTENT

| Abstr  | ak                                                         | i   |
|--------|------------------------------------------------------------|-----|
| Abstra | Abstract                                                   |     |
| Ackno  | Acknowledgement                                            |     |
| Table  | of Content                                                 | iv  |
| List o | f Tables                                                   | vii |
| List o | f Figures                                                  | х   |
| List o | f Abbreviations                                            | xi  |
|        |                                                            |     |
| 1. IN  | FRODUCTION                                                 | 1   |
| 1.1    | Background and Overview                                    | 1   |
| 1.2    | Problem Statement                                          | 4   |
| 1.3    | Project Aim & Objectives                                   | 6   |
| 1.4    | Scope                                                      | 6   |
| 1.5    | Project Planning                                           | 7   |
| 1.6    | Expected Outcome                                           | 7   |
| 1.7    | History of PLC                                             | 7   |
| 1.8    | PLC Definition                                             | 11  |
| 1.9    | Advantages of PLC                                          | 11  |
| 1.10   | Disadvantages of PLC                                       | 12  |
| 1.11   | Application of PLC                                         | 12  |
| 1.12   | Chapter Conclusion                                         | 13  |
|        |                                                            |     |
| 2. LI  | FERATURE REVIEW                                            | 14  |
| 2.1    | Introduction                                               | 14  |
| 2.2    | Pineapple                                                  | 14  |
| 2.2.1  | Morris Pineapple                                           | 16  |
| 2.2.2  | Maturity Index of Mauritius Pineapple                      | 17  |
| 2.3    | Removal of Pineapple Skin using Peeling and Coring Machine | 18  |
| 2.4    | Overall Project Components                                 | 20  |
| 2.5    | Mechanical Structure                                       | 20  |

| 2.5.1 The Classes of Engineering Material | 21 |
|-------------------------------------------|----|
| 2.5.1.1 Aluminium                         | 22 |
| 2.5.1.2 Stainless Steel                   | 23 |
| 2.5.1.3 Acrylics                          | 24 |
| 2.5.1.4 Comparison Table                  | 24 |
| 2.6 Mechanical Fabrication                | 25 |
| 2.6.1 Mechanical Fastening                | 25 |
| 2.6.1.1 Screw Thread Fastener             | 26 |
| 2.6.1.2 Rivets                            | 27 |
| 2.6.2 Welding                             | 28 |
| 2.6.2.1 Gas Tungsten Arc Welding          | 28 |
| 2.6.2.2 Gas Metal Arc Welding             | 30 |
| 2.6.3 Machining                           | 30 |
| 2.6.3.1 Drilling                          | 31 |
| 2.6.3.2 Grinding                          | 33 |
| 2.7 Actuator                              | 35 |
| 2.7.1 Motor                               | 36 |
| 2.7.1.1 Basic Principle of Electric Motor | 36 |
| 2.7.2 Types of Motor                      | 37 |
| 2.7.2.1 AC Motor                          | 38 |
| 2.7.2.2 DC Motor                          | 39 |
| 2.7.2.3 Stepper Motor                     | 40 |
| 2.8 Sensor                                | 41 |
| 2.8.1 Limit Switch                        | 42 |
| 2.8.2 Push Button                         | 42 |
| 2.8.3 Selector Switch                     | 44 |
| 2.8.4 Photoelectric Sensor                | 44 |
| 2.8.5 Proximity Sensor                    | 45 |
| 2.9 Controller                            | 46 |
| 2.9.1 Programmable Logic Controller       | 46 |
| 2.9.2 PLC Architecture                    | 47 |
| 2.9.2.1 Power Supply                      | 48 |
| 2.9.2.2 Processor                         | 49 |
| 2.9.2.3 Memory                            | 49 |

| 2.9.2.4                                       | 4 Input and Output                             | 50 |
|-----------------------------------------------|------------------------------------------------|----|
| 2.9.2.                                        | 5 Programming Device                           | 51 |
| 2.9.3                                         | Relay-Device Components                        | 51 |
| 2.9.3.                                        | 1 Switches                                     | 51 |
| 2.9.3.2                                       | 2 Relays                                       | 53 |
| 2.9.3.                                        | 3 Timers                                       | 53 |
| 2.9.4                                         | Types of Programming Language                  | 54 |
| 2.9.4.                                        | l Ladder Diagram                               | 55 |
| 2.9.4.2                                       | 2 Function Block Diagram                       | 56 |
| 2.9.4.                                        | 3 Structured Text Language                     | 57 |
| 2.9.5                                         | Keyence PLC                                    | 58 |
| 2.9.5.                                        | l Features of the Visual KV Series             | 58 |
| 2.10                                          | Software for Project Development               | 60 |
| 2.10.1                                        | Structural Design                              | 60 |
| 2.10.1                                        | .1Solid Works 2008                             | 61 |
| 2.10.1                                        | .2AutoCAD                                      | 62 |
| 2.10.1                                        | .3Catia                                        | 63 |
| 2.10.2 PLC Programming using Keyence Software |                                                | 63 |
| 2.10.2                                        | .1Name and Function of Each Part of the Screen | 65 |
| 2.11                                          | Similar Past Project                           | 66 |
| 2.12                                          | Conclusion                                     | 67 |
|                                               |                                                |    |
| 3. ME                                         | THODOLOGY                                      | 68 |
| 3.1                                           | Introduction                                   | 68 |
| 3.2                                           | Methodology Flow Chart                         | 68 |
| 3.3                                           | Methodology Section                            | 69 |
| 3.4                                           | Description of Methodology Flow Chart          | 69 |
| 3.4.1                                         | Literature Review                              | 70 |
| 3.4.2                                         | Methodology                                    | 72 |
| 3.4.3                                         | Design Consideration                           | 72 |
| 3.4.3.                                        | l Hardware                                     | 73 |
| 3.4.3.2                                       | 2 Software                                     | 73 |
| 3.4.4                                         | Interfacing                                    | 74 |
| 3.4.5                                         | Troubleshooting                                | 74 |

| 3.4.6        | Testing                           | 75 |
|--------------|-----------------------------------|----|
| 3.4.7        | Result and Conclusion             | 75 |
| 3.5          | Software Tools Selection          | 75 |
| 3.5.1        | Solid Work 2009                   | 76 |
| 3.5.2        | Keyence Ladder Builder            | 76 |
| 3.6          | Project Components                | 79 |
| 3.7          | Material Selection                | 79 |
| 3.7.1        | Mechanical Structure Selection    | 80 |
| 3.7.2        | Motor Selection                   | 80 |
| 3.8          | Mechanical Fabrication Selection  | 81 |
| 3.8.1        | Fastening Selection               | 81 |
| 3.8.2        | Welding Selection                 | 81 |
| 3.8.3        | Machining Selection               | 82 |
| 3.9          | Conclusion                        | 82 |
|              |                                   |    |
| <b>4. DE</b> | SIGN AND DEVELOPMENT              | 83 |
| 4.1          | Introduction                      | 83 |
| 4.2          | Conceptual Design and Development | 83 |
| 4.2.1        | Design 1                          | 84 |
| 4.2.2        | Design 2                          | 86 |
| 4.3          | Quality Function Deployment       | 88 |
| 4.3.1        | Pugh Concept Selection            | 88 |
| 4.3.2        | Concept Selection                 | 89 |
| 4.4          | Development                       | 90 |
| 4.4.1        | Bill of Material                  | 91 |
| 4.4.2        | Mechanical Section                | 92 |
| 4.4.2.1      | Body Frame                        | 92 |
| 4.4.2.2      | 2 Cutter Blade                    | 94 |
| 4.4.3        | Electrical Section                | 95 |
| 4.4.4        | Programming Flow Chart            | 95 |
| 4.4.5        | PLC Ladder Diagram                | 97 |
| 4.4.6        | Steps of Programming              | 98 |
| 4.4.6.1      | Start-Stop programming            | 98 |

| 4.4.6.2 Automatic Programming |                             | 99  |
|-------------------------------|-----------------------------|-----|
| 4.4.6.3 Manual Programming    |                             | 99  |
| 4.5                           | Conclusion                  | 100 |
|                               |                             |     |
| 5. RE                         | SULT AND DISCUSSION         | 101 |
| 5.1                           | Programming Ladder Diagram  | 101 |
| 5.1.1                         | Ladder Diagram Test         | 101 |
| 5.2                           | Performance Test            | 103 |
| 5.2.1                         | Speed Test                  | 103 |
| 5.2.2                         | Time Test                   | 104 |
| 5.3                           | Conclusion                  | 104 |
|                               |                             |     |
| 6. CO                         | NCLUSION AND RECOMMENDATION | 106 |
| 6.1                           | Conclusions                 | 106 |
| 6.2                           | Recommendation              | 107 |
| REFF                          | ERENCES                     | 108 |

#### **APPENDICES**

| А | Design of paper cutter machine                                          |
|---|-------------------------------------------------------------------------|
| В | Virtual Design and kinematic simulation for cutter of corn harvester    |
| С | Integrated gripper and cutter in a mobile robotic system for harvesting |
|   | Greenhouse product                                                      |

# LIST OF TABLES

| 1.1 | Gross domestic product by kind of economic activity for 2000-2009 | 2   |
|-----|-------------------------------------------------------------------|-----|
|     | (Journal of Department of Statistics Malaysia, Volume 2, 2009)    |     |
| 1.2 | Pineapple statistic (Malaysia Pineapple Industry Board)           | 5   |
| 1.3 | Gantt chart for PSM I                                             | 8   |
| 1.4 | Gantt chart for PSM II                                            | 9   |
| 2.1 | Comparison table                                                  | 25  |
| 2.2 | Programming Language (Groover 2008)                               | 54  |
| 2.3 | Keyence PLC function (Keyence User Manual)                        | 60  |
| 3.1 | Motor selection table                                             | 80  |
| 4.1 | Simple QFD Diagram Characteristics (Chitale and Gupta 2007)       | 89  |
| 4.2 | Pugh concept selection for design 1 and design 2                  | 90  |
| 4.3 | Bill of Material                                                  | 91  |
| 4.4 | Input and Output of PLC                                           | 98  |
| 5.1 | Function of switches in PLC programming                           | 102 |
| 5.2 | Performance test result                                           | 103 |
| 5.3 | Cycle time result                                                 | 104 |

# LIST OF FIGURES

| 1.1  | Percentage distribution of establishment by sub-sector 2008               | 3  |
|------|---------------------------------------------------------------------------|----|
|      | (Report on Census of Agricultural Establishment, Malaysia 2009).          |    |
| 1.2  | A PLC system: CPU module and I/O rack (Chang, Wysk and                    | 10 |
|      | Wang 2006)                                                                |    |
| 1.3  | The manufacturing process industry to produce consumables                 | 13 |
|      | (Rockis and Mazur 2005)                                                   |    |
| 2.1  | Pineapple plantation (Malaysia Pineapple Industry Board)                  | 15 |
| 2.2  | Pineapple plant (Malaysia Pineapple Industry Board)                       | 15 |
| 2.3  | Morris pineapple                                                          | 16 |
| 2.4  | Hand sizing and coring machine (Muzium Nanas Johor)                       | 19 |
| 2.5  | Gigantic Machine (Muzium Nanas Johor)                                     | 19 |
| 2.6  | The class of engineering material (Ashby 1999)                            | 22 |
| 2.7  | Mechanical assembly using (a) a screw, (b) a bolt, (c) a rivet, and       | 26 |
|      | (d) a snap-fit joint (Benhabib 2003)                                      |    |
| 2.8  | Screw and bolt heads (Benhabib 2003)                                      | 27 |
| 2.9  | Rivet geometries: (a) solid, (b) tubular, (c) compression, and            | 28 |
|      | (d) split (Benhabib 2003)                                                 |    |
| 2.10 | (a) The gas tungsten-arc welding process formerly known as tungsten       | 29 |
|      | inert welding. (b) Equipment for gas tungsten-arc welding operations      |    |
|      | (Kalpakjian and Schmid 2006)                                              |    |
| 2.11 | (a) Schematic illustration of the gas metal-arc welding process or        | 31 |
|      | metal inert gas welding. (b) Basic equipment used in gas metal-arc        |    |
|      | welding operations (Kalpakjian and Schmid 2006)                           |    |
| 2.12 | (a) Chisel-point drill. (b) Crankshaft drill (Kalpakjian and Schmid 2006) | 32 |
| 2.13 | (a) Grinding wheel structure. (b) Material removal (Benhabib 2003)        | 33 |
| 2.14 | Surface grinding with (a) a horizontal spindle. (b) a vertical            | 34 |
|      | spindle (Benhabib 2003)                                                   |    |
| 2.15 | Cylindrical (a) internal and (b) external grinding (Benhabib 2003)        | 34 |
| 2.16 | Centerless (a) internal and (b) external grinding (Benhabib 2003)         | 35 |

| 2.17 | A rotating electric motor (Groover 2008)                             | 36    |
|------|----------------------------------------------------------------------|-------|
| 2.18 | The classification of motor (Petruzella 2010)                        | 37    |
| 2.19 | AC Motor parts (Rockis and Mazur 2005)                               | 38    |
| 2.20 | DC Motor parts (Rockis and Mazur 2005)                               | 40    |
| 2.21 | Stepper motor (Petruzella 2010)                                      | 41    |
| 2.22 | Application of limit switch (Rockis and Mazur 2005)                  | 43    |
| 2.23 | Exploded view of push button (Rockis and Mazur 2005)                 | 43    |
| 2.24 | Selector switches (Rehg and Sartori 2007)                            | 44    |
| 2.25 | Photoelectric sensor (Rockis and Mazur 2005)                         | 45    |
| 2.26 | Proximity sensor sensing range (Petruzella 2010)                     | 46    |
| 2.27 | An Example of Bosch Programming Logic Controller (Rockis             | 47    |
|      | and Mazur 2005)                                                      |       |
| 2.28 | Components of PLC (Groover 2008)                                     | 48    |
| 2.29 | Types of switches (Chang, Wysk and Wang 2006)                        | 52    |
| 2.30 | A relay (Chang, Wysk and Wang 2006)                                  | 53    |
| 2.31 | A timer (Chang, Wysk and Wang 2006)                                  | 54    |
| 2.32 | Ladder diagram and components (Chang, Wysk and Wang 2006)            | 56    |
| 2.33 | Example FBD circuit (Rehg and Sartori 2007)                          | 57    |
| 2.34 | Keyence PLC part name (Keyence User Manual)                          | 59    |
| 2.35 | Solid Works 2008 interface                                           | 62    |
| 2.36 | Catia interface                                                      | 63    |
| 2.37 | Ladder Builder interface (Keyence User Manual)                       | 64    |
| 2.38 | Sample of programming Ladder Builder                                 | 64    |
| 2.39 | Name and function of Ladder Builder window                           | 65    |
| 2.4  | Name and function of each part of the screen                         | 65    |
| 3.1  | Methodology Flow Chart                                               | 71    |
| 3.2  | Multi-file edits (Keyence Support Software)                          | 77    |
| 3.3  | Selection of instruction word and device (Keyence Support Software)  | 77    |
| 3.4  | Selection of device by dragging and dropping (Keyence Support Softwa | re)78 |
| 3.5  | The three window (Keyence Support Software)                          | 78    |
| 3.6  | Project components                                                   | 79    |

| 4.1  | Design 1                          | 85  |
|------|-----------------------------------|-----|
| 4.2  | Solid modeling for design 1       | 84  |
| 4.3  | Design 2                          | 87  |
| 4.4  | Solid modeling for design 2       | 86  |
| 4.5  | Body frame                        | 92  |
| 4.6  | Unfolded views of the sheet metal | 93  |
| 4.7  | Machining housing                 | 94  |
| 4.8  | Programming flow chart            | 96  |
| 4.9  | PLC programming                   | 97  |
| 4.10 | Start-stop ladder diagram         | 98  |
| 4.11 | Automatic mode ladder diagram     | 99  |
| 4.12 | Manual mode ladder diagram        | 100 |
|      |                                   |     |

| 5.1 | Successful cutting pineapple | 103 |
|-----|------------------------------|-----|
|-----|------------------------------|-----|

## LIST OF ABBREVIATIONS

| PLC     | - | Programmable Logic Controller                          |
|---------|---|--------------------------------------------------------|
| FKP     | - | Fakulti Kejuruteraan Pembuatan                         |
| PSM     | - | Projek Sarjana Muda                                    |
| GDP     | - | Gross Domestic Product                                 |
| MPIB    | - | Malaysia Pineapple Industry Board                      |
| MODICON | - | Modular Digital Controller                             |
| NEMA    | - | National Electrical Manufacturing Association          |
| AC      | - | Alternating Current                                    |
| DC      | - | Direct Current                                         |
| GTAW    | - | Gas Tungsten Arc Welding                               |
| TIG     | - | Tungsten Inert Gas                                     |
| GMAW    | - | Gas Metal-arc Welding                                  |
| MIG     | - | Metal Inert Gas                                        |
| NO      | - | Normally Open                                          |
| NC      | - | Normally Close                                         |
| CPU     | - | Central Processing Unit                                |
| ROM     | - | Read-only memory                                       |
| RAM     | - | Random-access memory                                   |
| PROM    | - | Programmable read-only memory                          |
| EPROM   | - | Erasable programmable read-only memory                 |
| EAPROM  | - | Electronically alterable programmable read-only memory |
| PC      | - | Personal Computer                                      |
| LD      | - | Ladder Diagram                                         |
| FBD     | - | Function Block Diagram                                 |
| SFC     | - | Sequential Function Chart                              |
| IL      | - | Instruction List                                       |
| ST      | - | Structured Text                                        |
| CAD     | - | Computer Aided Design                                  |
| QFD     | - | Quality Function Deployment                            |
| TQM     | - | Total Quality Management                               |

# CHAPTER 1 INTRODUCTION

This chapter cover the general information for the project title "Automatic Pineapple Peeler Machine using Programmable Logic Controller (PLC)" likes background and overview of the project, problem statement, project aim and objectives, scope, project planning, and the expected outcome for this project.

#### 1.1 Background and Overview

The wealth of a nation is commonly measured by its gross domestic product (GDP), or the per capita GDP of the nation. The GDP reflects the "standard of living" for industrial countries. The GDP includes contributions from both private industry and government. Private industry is divided into the categories of agriculture, mining of oil and gas, manufacturing, construction, trade or commerce, financial intermediation, real estate, and services.

All of these industry sectors contribute to the wealth of a nation. Malaysia Department of Statistic indicate that in 2009, manufacturing sector contributed RM172, 696 million at current prices to real GDP of the nation. It shows the highest percentage among others sector for consecutive ten years as shows in Table 1.1. The statistics seem to tell a story of a declining and ever-marginalized manufacturing sector. However, the statistics also send signal of urgency and of a need for infrastructure transformation.

| Tahun             | Perta<br>Terna<br>Perhuta<br>Perik   | anian,<br>akan,<br>man dan<br>kanan  | Perlom<br>dan l                      | bongan<br>Kuari                      | Pemb                                 | ouatan                               | Peml                                 | binaan                               | Perkhidmatan<br>Services<br>Utiliti Perdagangan Pengangkutan, Kewangan, Perkhidmatan-<br>Borong dan Penyimpanan Insurans, Hartanah perkhidmatan Kerajaan<br>Puncit Hotel dan dan Komunikasi dan Berkhidmatan Lain |                                      |                                                                                 |                                      |                                      |                                      |                                      |                                      | Tolak : FISIM<br>yang tidak<br>diagihkan |                                      | Campur : Duti<br>Import              |                                      | Keluaran Dalam<br>Negeri Kasar<br>(KDNK) pada<br>Harga Pembeli |                                      |                                      |                                      |                                      |                                      |
|-------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Year              | Agriculture<br>Forestry a            | , Livestock,<br>Ind Fishing          | Minin<br>Quar                        | g and<br>rying                       | Manufa                               | acturing                             | Const                                | truction                             | Restoran<br>Utilities<br>Wholesale and Retail<br>Trade, Hotels and<br>Restaurants                                                                                                                                 |                                      | il Transport, Storage<br>and Real Estate and<br>Communication Business Services |                                      | Other Services                       |                                      | Government<br>Services               |                                      | Less :<br>Undistributed<br>FISIM         |                                      | Plus : Import<br>Duties              |                                      | Gross Domestic<br>Product (GDP) at<br>Purchasers' Prices       |                                      |                                      |                                      |                                      |                                      |
|                   | Harga<br>Semasa<br>Current<br>Prices | Harga<br>Malar<br>Constant<br>Prices | Harga<br>Semasa<br>Current<br>Prices | Harga<br>Malar<br>Constant<br>Prices | Harga<br>Semasa<br>Current<br>Prices | Harga<br>Malar<br>Constant<br>Prices | Harga<br>Semasa<br>Current<br>Prices | Harga<br>Malar<br>Constant<br>Prices | Harga<br>Semasa<br>Current<br>Prices                                                                                                                                                                              | Harga<br>Malar<br>Constant<br>Prices | Harga<br>Semasa<br>Current<br>Prices                                            | Harga<br>Malar<br>Constant<br>Prices | Harga<br>Semasa<br>Current<br>Prices | Harga<br>Malar<br>Constant<br>Prices | Harga<br>Semasa<br>Current<br>Prices | Harga<br>Malar<br>Constant<br>Prices | Harga<br>Semasa<br>Current<br>Prices     | Harga<br>Malar<br>Constant<br>Prices | Harga<br>Semasa<br>Current<br>Prices | Harga<br>Malar<br>Constant<br>Prices | Harga<br>Semasa<br>Current<br>Prices                           | Harga<br>Malar<br>Constant<br>Prices | Harga<br>Semasa<br>Current<br>Prices | Harga<br>Malar<br>Constant<br>Prices | Harga<br>Semasa<br>Current<br>Prices | Harga<br>Malar<br>Constant<br>Prices |
| 2000              | 30,647                               | 30,647                               | 37,617                               | 37,617                               | 109,998                              | 109,998                              | 13,971                               | 13,971                               | 10,629                                                                                                                                                                                                            | 10,629                               | 47,934                                                                          | 47,934                               | 24,898                               | 24,898                               | 48,287                               | 48,287                               | 21,324                                   | 21,324                               | 22,576                               | 22,576                               | 17,308                                                         | 17,308                               | 5,826                                | 5,826                                | 356,401                              | 356,401                              |
| 2001              | 28,245                               | 30,594                               | 33,945                               | 36,980                               | 103,434                              | 105,301                              | 14,241                               | 14,427                               | 11,281                                                                                                                                                                                                            | 11,062                               | 49,201                                                                          | 48,974                               | 26,488                               | 26,409                               | 50,987                               | 50,570                               | 22,594                                   | 22,223                               | 24,104                               | 23,583                               | 17,594                                                         | 17,505                               | 5,653                                | 5,629                                | 352,579                              | 358,246                              |
| 2002              | 34,432                               | 31,471                               | 34,169                               | 38,610                               | 112,076                              | 109,640                              | 14,673                               | 14,762                               | 11,970                                                                                                                                                                                                            | 11,759                               | 51,326                                                                          | 50,986                               | 28,197                               | 27,441                               | 55,828                               | 55,392                               | 23,810                                   | 23,105                               | 27,450                               | 24,816                               | 17,324                                                         | 17,018                               | 6,605                                | 6,594                                | 383,213                              | 377,559                              |
| 2003              | 38,971                               | 33,369                               | 41,918                               | 40,959                               | 125,332                              | 119,687                              | 15,200                               | 15,031                               | 12,607                                                                                                                                                                                                            | 12,282                               | 53,062                                                                          | 51,965                               | 30,172                               | 28,621                               | 57,914                               | 58,011                               | 24,891                                   | 23,996                               | 29,569                               | 26,693                               | 17,374                                                         | 17,654                               | 6,507                                | 6,453                                | 418,769                              | 399,414                              |
| 2004              | 43,949                               | 34,929                               | 56,881                               | 42,627                               | 144,007                              | 131,127                              | 15,458                               | 14,903                               | 13,711                                                                                                                                                                                                            | 13,100                               | 59,401                                                                          | 56,441                               | 33,319                               | 30,973                               | 60,531                               | 60,775                               | 26,099                                   | 24,996                               | 31,827                               | 28,243                               | 17,531                                                         | 17,705                               | 6,396                                | 6,099                                | 474,048                              | 426,508                              |
| 2005              | 43,854                               | 35,835                               | 75,062                               | 42,472                               | 154,657                              | 137,940                              | 15,680                               | 14,685                               | 14,327                                                                                                                                                                                                            | 13,851                               | 66,535                                                                          | 61,346                               | 35,978                               | 32,870                               | 65,328                               | 65,541                               | 27,542                                   | 26,064                               | 34,426                               | 30,371                               | 17,314                                                         | 17,742                               | 6,372                                | 6,017                                | 522,445                              | 449,250                              |
| 2006              | 50,436                               | 37,701                               | 85,566                               | 42,030                               | 168,736                              | 147,154                              | 15,976                               | 14,639                               | 15,160                                                                                                                                                                                                            | 14,523                               | 72,724                                                                          | 65,492                               | 38,882                               | 35,185                               | 72,331                               | 71,253                               | 28,978                                   | 27,234                               | 38,093                               | 33,412                               | 18,099                                                         | 18,385                               | 5,659                                | 5,287                                | 574,441                              | 475,526                              |
| 2007°             | 65,032                               | 38,224                               | 92,402                               | 42,881                               | 178,705                              | 151,789                              | 17,645                               | 15,332                               | 16,014                                                                                                                                                                                                            | 15,106                               | 83,328                                                                          | 73,390                               | 42,588                               | 38,137                               | 81,895                               | 80,672                               | 30,819                                   | 28,593                               | 44,231                               | 35,004                               | 18,853                                                         | 19,730                               | 5,969                                | 5,521                                | 639,776                              | 504,919                              |
| 2008 <sup>p</sup> | 75,657                               | 39,769                               | 127,210                              | 42,550                               | 194,103                              | 153,744                              | 19,581                               | 15,657                               | 16,911                                                                                                                                                                                                            | 15,431                               | 97,606                                                                          | 80,262                               | 45,778                               | 40,687                               | 87,319                               | 85,192                               | 33,038                                   | 30,090                               | 53,987                               | 38,875                               | 19,949                                                         | 20,786                               | 7,436                                | 6,839                                | 738,677                              | 528,311                              |
| 2009 <sup>p</sup> | 64,651                               | 39,929                               | 87,722                               | 40,926                               | 172,696                              | 139,448                              | 21,165                               | 16,548                               | 17,711                                                                                                                                                                                                            | 15,489                               | 96,939                                                                          | 81,403                               | 46,115                               | 41,326                               | 90,584                               | 88,343                               | 35,159                                   | 31,403                               | 55,596                               | 40,031                               | 21,085                                                         | 22,270                               | 7,181                                | 6,642                                | 674,434                              | 519,218                              |

Table 1.1 : Gross domestic product by kind of economic activity for 2000-2009 (Journal of Department of Statistics Malaysia, Volume 2, 2009)

Based on the facts, agriculture provides infrastructure transformation. It is so because agriculture produced 9.59% of the GDP. It's a potential sector to be transformed. Farming meant using animal power to plow the fields. Nowadays, riding on airconditioned machinery guided by a global positioning system, farmer can farm thousands of acres of land and produce a high yield. Improved crops, the precise delivery of fertilizer and insecticide, better weather forecasting, specialized farm equipment, and more made all that possible.



Figure 1.1: Percentage distribution of establishment by sub-sector 2008 (Report on Census of Agricultural Establishment, Malaysia 2009).

The product from agriculture mainly used in food industry. In Malaysia, the food industry is dominated by small and medium scale companies. The major sub-sector is fish and fish products, livestock and livestock products, and crops and crops products (Figure 1.1). In the crops sector, besides mango, star fruits and papaya, the cultivation of pineapple is gaining interest among farmer. Most of these pineapples cater for the domestic market. The major locations pineapple cultivation is in Pekan Nanas, Johor.

The manufacture of pineapple in 2008 had reached 173,832 metric ton, which 156,111 ton metric come from fresh pineapple and the balance come from canned pineapple (Table 1.2). Malaysia''s export earnings from fresh and canned pineapples in 2008 had reached RM488 million. RM455 million in export earnings was from

fresh pineapples and RM33 million through the canned product. Canned pineapple contributes a great amount of that profit.

However, there still a lot of insufficient factor that effects the canned production line. One of the major problems in canned production line is how to peel the pineapples. The idea to design an automatic pineapple peeler machine using Programming Logic Controller (PLC) came up based on that circumstance. Automation is an answer to produce better product at lower cost and high quality because manufacturing is an activity that is traditionally labor intensive.

To compete in the global market and still maintain the standard of living of this country, the importance of developing and deploying new manufacturing technology must not ignored.

#### **1.2** Problem Statement

In canned pineapple manufacturing in Malaysia, pineapple skin is removed using "Kwong Nam" machine (Malaysia Pineapple Industry Board, MPIB). However, the machine is not accurate because after the machining process, the pineapple still needs to be manually peeled by workers to remove the balance of the peel and the eyes. This increases process time and cost. It is also not effective. Critical hygiene factor also plays a big role in this type of production because it involves food processing. The machine that being used in the factory usually is big and are difficult to clean up and the cleanliness of the machine are often doubted.

Another issue is related to the small and medium scale pineapple canned industries. Most of the manufactures are not affordable to buy a large and expensive machine to peel the pineapples. A simple and smaller machine to peel the pineapple is needed for this purpose.



| TAHUN | PE         | ENGELUARA | N      | EKSPORT NANAS KALENG |                    |            |               |            |  |  |  |
|-------|------------|-----------|--------|----------------------|--------------------|------------|---------------|------------|--|--|--|
|       | BUAH NANAS | NANAS P   | ALENG  | Peti Piawai          | T/METRIK           | NILAI (RM) | HARGA F       | .O.B. (RM) |  |  |  |
| 1970  | 308.400    | 3.521.000 | 71.891 | 71 891 3 223 600     |                    | 51,782,800 | 16.06         | 786.7      |  |  |  |
| 1971  | 301,400    | 3.356.700 | 68,536 | 2.881.000            | 58,824             | 46.232.500 | 16.05         | 786.0      |  |  |  |
| 1972  | 288,100    | 2,990,600 | 61,061 | 3.039.900            | 62.068             | 49.262.500 | 16.21         | 793.7      |  |  |  |
| 1973  | 262,700    | 2,830,700 | 57,797 | 2,671,100            | 54,538             | 46,203,700 | 17.30         | 847.2      |  |  |  |
| 1974  | 257,600    | 2,884,000 | 58,885 | 2,532,500            | 51,708             | 61,357,400 | 24.23         | 1,186.6    |  |  |  |
| 1975  | 211,800    | 2,055,800 | 41,975 | 2,041,800            | 41,689             | 53,801,300 | 26.35         | 1,290.5    |  |  |  |
| 1976  | 201,000    | 2,255,200 | 46,046 | 2,367,300            | 48,335             | 64,884,000 | 384,000 27.41 |            |  |  |  |
| 1977  | 200,200    | 2,384,800 | 48,692 | 2,321,100            | 47,392             | 68,085,400 | 29.33         | 1,436.7    |  |  |  |
| 1978  | 195,700    | 2,330,400 | 47,582 | 2,090,100            | 42,675             | 65,888,300 | 31.52         | 1,544.0    |  |  |  |
| 1979  | 200,800    | 2,202,700 | 44,974 | 1,710,400            | 0 34,923 53,561,50 |            | 31.32         | 1,533.7    |  |  |  |
| 1980  | 185,300    | 2,243,000 | 44,873 | 1,800,600            | 36,022             | 51,454,200 | 28.58         | 1,428.4    |  |  |  |
| 1981  | 153,600    | 1,878,500 | 37,581 | 2,043,700            | 40,886             | 51,840,500 | 25.37 1,267.9 |            |  |  |  |
| 1982  | 153,000    | 1,968,600 | 39,383 | 2,081,600            | 41,644             | 56,061,500 | 26.93         | 1,346.2    |  |  |  |
| 1983  | 148,200    | 1,999,800 | 40,007 | 1,930,300            | 38,655             | 58,054,500 | 30.08         | 1,501.9    |  |  |  |
| 1984  | 144,300    | 2,172,000 | 43,452 | 2,136,900            | 42,750             | 69,368,200 | 32.46         | 1,622.6    |  |  |  |
| 1985  | 151,600    | 2,172,200 | 43,456 | 1,674,100            | 33,491             | 55,583,000 | 33.20         | 1,659.6    |  |  |  |
| 1986  | 144,400    | 1,942,100 | 38,853 | 2,097,500            | 41,963 56,448,500  |            | 26.91         | 1,345.2    |  |  |  |
| 1987  | 150,200    | 2,032,300 | 40,657 | 2,028,900            | 40,589             | 58,819,700 | 28.99         | 1,449.1    |  |  |  |
| 1988  | 163,600    | 2,110,200 | 42,216 | 1,908,300            | 38,177             | 57,992,100 | 30.39         | 1,519.0    |  |  |  |
| 1989  | 179,600    | 2,469,400 | 49,402 | 2,129,700            | 42,606             | 63,015,400 | 29.59         | 1,479.0    |  |  |  |
| 1990  | 168,275    | 2,308,446 | 46,182 | 2,463,570            | 49,285             | 79,474,932 | 32.26         | 1,612.5    |  |  |  |
| 1991  | 189,679    | 2,704,648 | 54,108 | 2,465,134            | 49,317             | 95,385,852 | 38.69         | 1,934.1    |  |  |  |
| 1992  | 189,344    | 2,575,007 | 51,515 | 2,155,571            | 43,124             | 81,202,518 | 37.67         | 1,883.0    |  |  |  |
| 1993  | 161,130    | 2,282,945 | 45,672 | 2,236,327            | 44,739             | 69,523,285 | 31.09         | 1,554.0    |  |  |  |
| 1994  | 156,189    | 2,327,446 | 46,562 | 2,137,434            | 42,761             | 65,169,027 | 30.49         | 1,524.0    |  |  |  |
| 1995  | 140,369    | 2,142,942 | 42,871 | 1,963,424            | 39,280             | 61,048,701 | 31.09         | 1,554.2    |  |  |  |
| 1996  | 121,915    | 1,934,543 | 38,702 | 1,707,167            | 34,153             | 62,908,251 | 36.85         | 1,842.0    |  |  |  |
| 1997  | 119,825    | 1,732,516 | 34,660 | 1,563,292            | 31,275             | 60,197,687 | 38.51         | 1,924.8    |  |  |  |
| 1998  | 92,035     | 1,381,055 | 27,629 | 1,147,949            | 22,965             | 60,733,943 | 52.91         | 2,644.6    |  |  |  |
| 1999  | 82,571     | 1,256,863 | 25,144 | 1,017,674            | 20,359             | 56,568,609 | 55.59         | 2,778.5    |  |  |  |
| 2000  | 71,043     | 1,080,506 | 21,616 | 815,031              | 16,305             | 38,418,071 | 47.14         | 2,356.2    |  |  |  |
| 2001  | 65,048     | 1,032,828 | 20,662 | 819,200              | 16,389             | 34,512,710 | 42.13         | 2,105.9    |  |  |  |
| 2002  | 70,052     | 1,149,101 | 22,989 | 961,121              | 19,228             | 39,752,953 | 41.36         | 2,067.5    |  |  |  |
| 2003  | 72,997     | 1,141,891 | 22,844 | 1,122,021            | 22,447             | 51,905,416 | 46.26         | 2,312.4    |  |  |  |
| 2004  | 81,618     | 1,083,013 | 21,666 | 991,585              | 19,837             | 48,723,020 | 49.14         | 2,456.1    |  |  |  |
| 2005  | 86,740     | 1,112,552 | 22,257 | 883,529              | 17,676             | 43,891,995 | 49.68         | 2,483.2    |  |  |  |
| 2006  | 85,902     | 1,224,630 | 24,500 | 877,079              | 17,547             | 43,291,535 | 49.36         | 2,467.2    |  |  |  |
| 2007  | 69,607     | 894,739   | 17,900 | 1,082,617            | 21,658             | 48,119,146 | 44.45         | 2,221.7    |  |  |  |
| 2008  | 156,111    | 885,801   | 17,721 | 576,403              | 11,531             | 33,612,807 | 58.31         | 2,914.9    |  |  |  |

**Table 1.2 :** Pineapple statistic (Malaysia Pineapple Industry Board, 2008)



#### 1.3 Project Aims & Objectives

This project aims to produce an efficient and accurate automatic pineapple peeler machine using Keyence PLC as its controller.

To fulfil the project aim, three objectives have been lined up and must be achieved:

- a) To design and develop the mechanical structure suitable for the machine task of pineapple peeling and the mounting of sensors and motor.
- b) To develop the electrical circuits and program the Keyence PLC to achieve the project task.
- c) To interface between the hardware and programming software in order to for the machine to successfully carry out its task.

#### 1.4 Scope

A PLC system will be used in this automatic pineapple peeler machine to make the machine operate automatically by using motor and a push button. Both the PLC system and the machine will communicate using a push button. This machine will include with push button which is the start button. The machine also include with a door as a passage to put a pineapple into the machine. When user activates the push button, the PLC will get the input and transfer it to the motor to move the cutter to cut the pineapple peel. It also included with sensor which is limit switch to act as safety mechanism to the system. The limit switch is attached at the door. When the door of the machine is close, the switch will triggered and the motor will function. Once the door of the machine is open, the motor will stop although the button is push. It designed to avoid injury and accident.

The PLC system is used to control the motor in the machine. The motor is attached with the cutter. When the button is push, the motor will trigger and moving down the cutter to cut the skin. After certain time, the motor will bring up the cutter again. A sensor which is limit switch is used to determine the limit level of the cutter to make sure that the cutter not crashes with the body of the machine. Another sensor is used

to determine whether the safety door is in open or close position for safety precautions.

#### **1.5 Project Planning**

The planning for this project starts with title selection for "Projek Sarjana Muda" (PSM) and a proposal preparation. In the report, details information and graphics for the machine will be discussed. The report covers the introduction, literature review, methodology, conceptual design, project development, results, discussion, and conclusion. The planning for the entire semester are list and shows in the Gantt chart in Table 1.3 and Table 1.4. Table 1.3 shows about the planning horizon for PSM I and Table 1.4 shows the planning for PSM II.

#### 1.6 Expected Outcome

The expected outcome for this project is a fully functional an automatic pineapple peeler machine using PLC. The machine is designed for use in the small and medium scale industries. The expected cost for the machine will not exceed RM1000. The machine that will be produced must peel the pineapple skin automatically without leaving behind any single piece of the skin.

#### **1.7 History of PLC**

In the mid-1960s, Richard Morley, a partner in consulting firm specializing in control systems in England was involved in replacing relays with minicomputers in machine tool controls. In January 1968, Morley devised the notion and wrote the specifications for the first programmable controller. It would overcome some of the limitations of conventional computers used for process control at the time.