RFID SMART KEY DETECTOR

AL-AWAZANGI BIN SHA'ARANI

This report is submitted in partial fulfilment of the requirements for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > April 2009

C Universiti Teknikal Malaysia Melaka

The MALAYSIA ME	IVERSTI TEKNIKAL MALAYSIA MELAKA
FAKULTI KEJU	RUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER
S&INING	BORANG PENGESAHAN STATUS LAPORAN
	PROJEK SARJANA MUDA II
Tajuk Projek :R	FID SMART KEY DETECTOR
Sesi Pengajian	2008/2009
Sava AL-AWA	ZANGI BIN SHA'ARANI
Jaya	(HURUF BESAR)
mengaku membenarkan Laporan Pro syarat kegunaan seperti berikut:	ojek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-
1. Laporan adalah hakmilik Univer	rsiti Teknikal Malaysia Melaka.
 Perpustakaan dibenarkan membro Perpustakaan dibenarkan membro 	uat salinan untuk tujuan pengajian sahaja. uat salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian tinggi.	au suman aporan ni secuga suma pertakatan anara institusi
4. Sila tandakan (\vee):	
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PENULI	S) (COP DAN TANDATANGAN PENYELIA)
Alamat Tetap: NO3, JLN 6, TMN BUKIT BT8, JLN PUCHONG, 471 PUCHONG, SELANGOR	KUCHAI, 00,
Tarikh:	Tarikh:
	Taknikal Malaysia Malaka

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature	:
Name	: AL-AWAZANGI BIN SHA'ARANI
Date	:

iii

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours."

Signature	:
Supervisor's Name	: EN. ZULKARNAIN BIN ZAINUDIN
Date	:

Special dedicated to my beloved parents and siblings, who encouraged, guided and supported me throughout my study life

ACKNOWLEDGEMENT

Thanks to Allah S.W.T., with His Compassion and Grace, I can manage to complete the project with a group of knowledgeable people while doing my project a pleasant and exciting experiences one. Their help and support throughout is greatly appreciated. I would like to give the highest gratitude to my supervisor, Mr. Zulkarnain Bin Zainudin, for his help, advices and responsibilities throughout the project especially during difficult time. Not to forget, thanks to my beloved parents for their encouragement and moral support.

I also would like to take this opportunity to show my appreciations to my friends who also contribute their efforts and supports in completing my project.

ABSTRACT

This project is about designing a RFID Smart Key Detector. The objective of build this project is to build up security system base on the RFID application and to avoid and reduce duplication key. There are two major scopes of work that will be covered along this project which are research and find information about RFID and development of PIC16F876A and a RFID reader IDR-232 to control LCD (2x16 character), LED, buzzer and relay. According to the problems statement, there are a lot of security products to strengthen the security but RFID Smart Key Detector is the best way as a guardian of our properties and avoids key duplication. RFID Smart Key Detector is a system to make security more efficient and safety compared to traditional security. This system consists of a RFID tag that will locate at the card and RFID reader IDR-232 as a main of RFID system to detect the tag. This system is combination of two types of switches; motorcycle ignition switch and RFID system as second layer. In the future, this system can be applied for home and office security which using our identification card (IC) to overcome the counterfeit of the RFID.

ABSTRAK

Projek ini dibina dengan tujuan untuk mengaplikasikan sistem RFID dalam kehidupan seharian. Pengesan Kunci Pintar RFID ini merupakan salah satu aplikasi yang boleh digunapakai. Tujuan utama membangunkan projek ini adalah untuk membina sistem keselamatan berasaskan RFID dan disamping itu untuk mengurangkan kadar penggunaan kunci pendua. Skop projek ini tertumpu kepada dua bidang utama iaitu melakukan kajian terperinci tentang system RFID dan melakukan pembangunan sistem RFID berdasarkan PIC16F876A dan pengesan RFID IDR-232 untuk mengawal skrin LCD (2x16 patah perkataaan), LED, penguat bunyi dan geganti. Berdasarkan penyataan masalah projek, kini terdapat banyak pengeluar yang telah menghasilkan sistem keselamatan ini namun setiap sistem yang dihasilkan mempunyai kelemahan-kelemahan yang tersendiri. Pengesan Kunci Pintar RFID adalah salah satu konsep di mana bukan sahaja bertindak sebagai sistem keselamatan, namun dapat mengelakkan masalah yang boleh datang daripada penggunaan kunci pendua. Sistem RFID yang akan digunapakai ini merangkumi daripada tag dan pengesan tag yang akan menjadi tulang belakang sistem keselamatan ini. Secara keseluruhan, sistem ini bermula apabila kunci suis mula dimasukan ke dalam suis penalaan motosikal dan sistem RFID akan bertindak untuk mengesan tag yang dilampirkan bersama kunci suis berikut. Untuk penggunaan masa hadapan, sistem ini boleh digunapakai untuk keselamatan di rumah dan di pejabat dengan menggunakan kad pengenalan yang sedia ada.

TABLE OF CONTENTS

Ι

PAGE

PROJECT TITLE			i
VERIFICATION FORM			ii
DEC	DECLARATION		
VER	IFICATION		iv
DED	ICATION		v
ACK	NOWLEDGEMENT		vi
ABS	ГКАСТ		vii
ABS	ABSTRAK		
TAB	LE OF CONTENTS		ix
LIST OF TABLES			xiii
LIST	OF FIGURES		xiv
LIST OF ABBREVIATION			xvi
LIST OF APPENDICES			xvii
INTE	RODUCTION		1
1.1	Background of Project		1
1.2	Objectives of Project		3
1.3	Problems Statement		3
1.4	Scopes of Project		3
1.5	Brief Methodology		4
1.6	Outline of Thesis		5

ix

LITERATURE VIEW

2.1	Literature Review Overview		6
2.2	Proxir	Proximity Security System for Cornell	
	Unive	ersity ID	6
2.3	RFID	-Based Anti-theft Auto Security System	
	With a	an Immobilizer	8
	2.3.1	Basic Operation	8
		2.3.1.1 Transmitting Unit	9
		2.3.1.2 Receiving Unit	10
2.4	Auton	natic Vehicle Access	11
2.5	Theory on Devices		12
	2.5.1	Software Design	12
		2.5.1.1 C Language	12
		2.5.1.2 Assembly Language	14
	2.5.2	Microchip PIC16F876A Microcontroller	15
	2.5.3	LCD Alphanumeric Display	17
	2.5.4	Voltage Regulator (LM7805)	18
	2.5.5	RFID Reader IDR-232	19

III **METHODOLOGY**

Project Overview 3.1 20 3.2 Project Framework 20 3.3 Programming 23 3.3.1 MPLAB IDE v8.20 23 3.3.1.1 Project Wizard 23 3.3.1.2 Select Devices 24 3.3.1.3 Language Toolsuite 24 3.3.1.4 Create the Project 25 27 3.3.1.5 Add Files 3.3.1.6 Create the Programming Code (*.Hex) 27

6

20

Π

3.4	PIC 16F876A Microcontroller	29
	3.4.1 I/O Ports	29
	3.4.2 PORTA and TRISA Register	29
	3.4.3 PORTB and TRISB Register	30
	3.4.5 PORTC and TRISC Register	30
3.5	Programming the LCD Display	30
3.6	Setup RFID Reader IDR-232	32
	3.6.1 Pin Configuration	35
3.7	Voltage Regulator Circuit	36
3.8	Interface PIC16F876A with Buzzer	37
3.9	Interface PIC16F876A with Relay	38
3.10	ICSP for Programming PIC Microcontroller	38
3.11	Push Button as Input for PIC Microcontroller	39
3.12	LED as Output for PIC Microcontroller	39
3.13	Reset circuit	40
3.14	PCB designation	41

IV RESULTS AND DISCUSSION

4.1	Results Overview	43
4.2	Expected Results	43
4.3	Flowchart of Programming	44
4.4	Testing PIC 16F876A	45
4.5	Circuit Description	45
4.6	Problems	47
	4.6.1 LCD Display	47
	4.6.2 Others	49
4.7	Achievements	49

43

CON	ICLUSION AND RECOMMENDATION	51
5.1	Conclusion	51
5.2	Recommendation	52

V

LIST OF TABLES

NO TITLE

PAGE

2.1	List of Voltage Regulators	18
3.1	LCD Connection and Function of Each Pin	31
3.2	Configuration of RFID Reader Wires	35

LIST OF FIGURES

NO TITLE

PAGE

1.1	Basic System Operation	4
2.1	RFID Reader with Combination of Door Lock	7
2.2	ID Cards Posing with the RFID Reader	7
2.3	Transmitting Unit Functional Block Diagram	9
2.4	Receiving Unit Functional Block Diagram	10
2.5	Automatic Vehicle Access	11
2.6	Pin Diagram of PIC 16F876A	16
2.7	Physical of LCD Display	17
2.8	Voltage Regulator	18
2.9	RFID Reader IDR-232	19
3.1	Flowchart of the Project Methodology	21
3.2	Circuit for RFID Smart Key Detector	22
3.3	Devices Selection	24
3.4	Selecting Toolsuite	25
3.5	Create Project File	26
3.6	Summary of Project Wizard	26
3.7	Adding the Programming Code	27
3.8	Create the Programming Code (*.Hex)	28
3.9	Debug the Programming Code	28
3.10	Programming Code in *.Hex File	29
3.11	Characteristic in LCD Display	31
3.12	5V dc Supply Voltage for IDR-232	32
3.13	Communication Line Connected to Serial Port of PC	33
3.14	Summarize for Configuration IDR-232	34

3.15	Tag's ID Shows in HyperTerminal	34
3.16	5 Wires of RFID Reader	35
3.17	Connection of IDR-232 in Circuit	36
3.18	Voltage Regulator Circuit	37
3.19	Buzzer Connection in Circuit	37
3.20	UIC00A Connection in Circuit	38
3.21	Push Button as Input	39
3.22	LED Pin Connection as Output	40
3.23	The Photolithography Process Sequence	41
3.24	PCB Layout for RFID Smart Key Detector using Proteus 7	42
4.1	Flowchart of Programming	44
4.2	Circuit Running in Proteus 7.1	46
4.3	RFID Smart Key Detector Prototype	47
4.4	Error Language Display on LCD	48
4.5	LCD Displayed as Required	48
4.6	Second Display before Tag ID Swipe on RFID Reader	49

XV

LIST OF ABBREVIATION

RFID	-	Radio Frequency Identification
EPC	-	Electronic Product Code
ICAO	-	International Civil Aviation Organization
LED	-	Light Emitting Diode
FSK	-	Frequency Shift Keying
AM	-	Amplitude Modulation
GPS	-	Global Positioning System
RF	-	Radio Frequency
PIC	-	Peripheral Interface Controller
CPU	-	Central Processing Unit
I/O	-	Input / Output
EEPROM	-	Electrically Erasable Programmable Read-Only Memory
SRAM	-	Static Random Access Memory
CMOS	-	Complementary Metal Oxide Semiconductor
LCD	-	Liquid Crystal Display
RAM	-	Random Access Memory
PC	-	Personal Computer
IC	-	Integrated Circuit

LIST OF APPENDICES

NO TITLE

PAGE

А	Programming Code in C Language	54
В	Datasheet PIC 16F876A	60
С	Specification of LCD Display	62

CHAPTER I

INTRODUCTION

1.1 Background of Project

RFID is a technology for automated identification of objects and people. Human beings are skilful at identifying objects under a variety of challenge circumstances. A bleary-eyed person can easily pick out a cup of coffee on a cluttered breakfast in the morning for example. RFID may be viewed as a means of explicitly labelling objects to facilitate their perception by computing devices. An RFID tag is a small microchip designed for wireless data transmission. It is generally attached to an antenna in a package that resembles an ordinary adhesive sticker. The microchip itself can be as small such 0.4mm². An RFID tag transmits data over the air in response to interrogation of reader.

In both the popular press and academic circle, RFID has seen a swirl of attention in the past few years. One important reason for this is effort of large organizations such as Wal-Mart and the U.S Department of Defence to deploy RFID as a tool for automated oversight of their supply chains. Due to tag cost, RFID tags are unlikely to appear regularly on consumer items for some years. Retailers have expressed interest, though, in ultimately tagging individual items. Such tagging would, for instance, address the perennial problem of item depletion on retail shelves, which is costly in term of lost sales.

Today, RFID is seeing fruition in the tagging of crates and pallets, that is, discrete bulk quantities of items. RFID tagging improves the accuracy and timeliness of information about the movement of goods in supply chains. The main form of barcode type RFID device is known as an EPC. An organization known as EPCglobal Inc. oversees the development of the standards for these tags.

In general, small and inexpensive RFID tags are passive, there is no on-board power source and they derive their transmission power from the signal of an interrogating reader. This will be discuss lately in chapter 3; methodology.

Many of us already use RFID tags routinely. Examples include proximity cards, automated toll-payment transponders, and payments tokens. The ignition keys of many millions of automobiles moreover include RFID tags as a theft-deterrent. RFID privacy is already concern in several areas of everyday life:

- Libraries Some libraries have implemented RFID systems to facilitate book checkout and inventory control and reduce repetitive stress injuries in librarians
- Passports An international organization known as ICAO has promulgated guidelines for RFID-enabled passports and other travel documents
- Human Implantation Few other RFID systems have inflamed the passions of privacy advocates like the VeriChip system. VeriChip is a humanimplantable RFID tag, much like the variety for the house pets

Malaysia is among the leading RFID user countries in the world. RFID technology was first introduced in 1997 in the Touch 'n Go system – the Malaysian electronic toll payment systems. In the following year, Department of Immigration Malaysia used RFID for passport issuance; and is the first country in the world to implement electronic Passport (e-Passport).

1.2 Objectives of Project

The aims of doing this project are stated below:

- Build up security system base on the RFID application
- To learn how to integrate RFID circuit with ignition coil of motorcycle
- To avoid and reduce duplication key

1.3 Problems Statement

Nowadays, security provides home introduced a lot of their products in market to strengthen the security. RFID Smart Key Detector is the best way as a guardian of our properties with RFID technology, it makes more secure and overcomes counterfeit. It can be used for at home, office or our vehicles. Among those products, RFID smart key detector is the best way as a guardian of our properties and avoids key duplication.

1.4 Scopes of Project

In this project, the scope is based on two major parts. By understanding these elements, the maximum usage of RFID can be obtained to fulfil the requirement.

- Research and find information about RFID
- Do analysis about the system and base of passive RFID

1.5 Brief Methodology

In order to complete this project, there are so many works that need to be done. The first stage is by understanding the concept of RFID. The second stage will be more on choosing the best RFID reader and passive tag in market and combination of ignition coil of motorcycle. The third stage is about test the hardware and makes troubleshoot the hardware problems if occurred.

Figure 1.1: Basic System Operation

1.6 Outline of Thesis

This thesis consists of five chapters. The first chapter discuss about background, objective, problems statement, scope and the brief methodology of this project. Chapter two discuss more on theory and include literature reviews that have been done. It also will discuss on components of the hardware and software used in this project. Chapter three discuss on the methodology software hardware development of this project and also the advantages and disadvantages. Chapter four will discuss about project's testing and results. Finally in chapter five it will discuss about conclusion and future work proposal for the project.

HAPTER II

LITERATURE REVIEW

2.1 Literature Review Overview

This chapter discuss about reviews of existing project created to get an idea about the project design, conception and any information that related to improve the project. With different concept and design, there are other creation and innovation of project done by other people.

2.2 Proximity Security System for Cornell University ID

An RFID based on proximity security system that use an antenna coil to power the RFID tag embedded in the Cornell ID's and read the induced response from the card. This response is then filtered and manipulated into useful data and interpreted by the Atmel Mega32 microcontroller which runs the actual security program. The security system can store up to 20 to 45-bit codes which are derived from communications with each unique RFID tag. If a card is read and it is not in the code database, a red LED flashes for 3 seconds. Likewise, if the code can be found in the database, a green LED lights for 3 seconds. From hyper term, the administrator has the power to add codes, delete codes, list all codes, "unlock" the door (the equivalent of the green LED flashing), and initialize routines which allow codes to be added to the database by gathering data from the reader itself.

C Universiti Teknikal Malaysia Melaka

Figure 2.1: RFID Reader with Combination of Door Lock

Figure 2.2: ID Cards Posing with the RFID Reader