MULTI SIZE SHAPE DETECTION

LIM CZE SIANG

This report is submitted in particular fulfilment of the requirements for the award of Bachelor of Electronic Engineering with Computer Engineering With Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > April 2010

C Universiti Teknikal Malaysia Melaka

SITI TEKNIKA	AS NIN	LAYSIA MILLAKA		TI KEJURUTER Borang P	EKNIKAL MALAYSIA MELAKA AAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER PENGESAHAN STATUS LAPORAN EK SARJANA MUDA II
	Та	juk Projek		MULTI SIZ	E SHAPE DETECTION
	Se Pe	si ngajian		2009/2010 -:	2
		Saya		LIM CZE S	SIANG
				(HURUF	BESAR)
mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Pe syarat-syarat kegunaan seperti berikut:		na Muda ini disimpan di Perpustakaan dengan			
	1.	Laporan a	dalah hakmilik U	Jniversiti Tekn	ikal Malaysia Melaka.
 Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertul 		n untuk tujuan pengajian sahaja.			
		n laporan ini sebagai bahan pertukaran antara			
		institusi p	engajian tinggi.		
	4.	Sila tanda	kan (√) :		
			SULIT*	atau kepen	ngi maklumat yang berdarjah keselamatan tingan Malaysia seperti yang termaktub di A RAHSIA RASMI 1972)
			TERHAD*	-	ngi maklumat terhad yang telah ditentukan sasi/badan di mana penyelidikan dijalankan)
		\checkmark	TIDAK TERHAD	1	
					Disahkan oleh:
			(TANDATANGA)	N PENULIS)	(COP DAN TANDATANGAN PENYELIA)
Alamat Tetap:319,TAMAN TUAN SHEIKH,71000 PORT DICKSON,N.SEMBILAN Tarikh:30 APRIL 2010 Tarikh:30 APRIL 2010			Tarikh:30 APRIL 2010		

C Universiti Teknikal Malaysia Melaka

"I hereby declare that this report is result of my own effort except for works that have been cited clearly in the references."

Signature	:	
Name	:	LIM CZE SIANG
Date	:	30 APRIL 2010

C Universiti Teknikal Malaysia Melaka

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering) With Honours"

SIGNATURE	:	
NAME	:	MR KHAIRUL AZHA B. A. AZIZ
DATE	:	30 APRIL 2010

C Universiti Teknikal Malaysia Melaka

Specially dedicated to my family for their supports and eternal love.

ACKNOWLEDGEMENTS

Praise to God, the Most Gracious and Most Merciful, Who has created the mankind with knowledge, wisdom and power.

First of all, the author would like to express his deepest gratitude to Encik Mr Khairul Azha B. A. Aziz for his continuous support, ideas, supervision and encouragement during the course of this project. The author would not have completed this project successfully without his assistance.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) for their encouragement and financial support during my study. Not forgetting to all my fellow postgraduate students and friends for their moral support and help me during the entire degree programme. Without their continued support and interest, this project would not have been realized. Appreciation is also acknowledged to those who have contributed directly or indirectly in the completion of this project.

The author would also like to extend his appreciation to his family members, for their support, patience and endless love.

ABSTRACT

Shape is the characteristic surface configuration of a thing such as an outline or contour. It can also be described give a particular form to create. The objective of this project is to design a system that can detect same shape even though in various size. The input of the system will be an image which can be any type of files containing many shapes with example circle, square, rectangular and others with multiple sizes. This project is mainly concern with shape classification using image processing technique. The proposed methods can be extended to various purpose especially in speeding up the processing time to search the shapes in the image. The system will be developed using MATLAB. For example in industrial, wafer dicing is the process by which die are separated from a wafer of semiconductor following the processing of the wafer. The die created may be any shape generated by straight lines, but they are typically rectangular or square shaped. The program developed may be used to check the accuracy of the die been created.

ABSTRAK

Bentuk merupakan satu ciri dimana permukaan konfigurasi benda seperti garis atau kontur. Ia boleh dijelaskan seperti objek yang dihasilkan. Tujuan projek ini adalah menghasilkan satu sistem dengan kebolehan menemui bentuk yang sama tetapi dalam saiz yang berbeza. Input kepada sistem tersebut adalah dengan imej yang dalam bentuk format yang berbeza yang mengandungi bulatan, segi empat sama, segi empat dan lain-lain dalam saiz yang berbeza. Projek ini mengambil berat tentang klasfikasi bentuk dengan menggunakan teknik pemprosesan imej. Cara yang dicadangkan boleh digunakan dalam pelbagai sebagai mencepatkan masa pemprosesan dalam penemuan bentuk dalam image. Sistem tersebut akan dihasilkan dengan menggunakan MATLAB. Sebagai contoh dalam industri, pendaduan wafer merupakan proses dimana dadu diasingkan daripada wafer dalam industri semikonduktor dimana pemprosesing wafer dilakukan. Dadu boleh dihasilkan melalui penghasilan bentuk dengan garis lurus dengan bentuk segiempat dan segi empat sama bentuk. Program yang dihasilkan dapat digunakan untuk meyemak ketepatan dadu yang dihasilkan.

TABLE OF CONTENTS

CHAPTER	CONTENT	PAGE
	DECLARATION	ii
	DEDICATION	v
	ACKNOWLEDGEMENTS	vi
	ABSTRACT	vii
	ABSTRAK	viii
	LIST OF CONTENTS	ix
	LIST OF TABLES	xii
	LIST OF FIGURES	xiii
	LIST OF NOTATIONS	xvi
	LIST OF EQUATIONS	xvii
	LIST OF ABREVIATIONS	xviii
	LIST OF APPENDICES	xix

I. INTRODUCTION

1.1	Introduction to shape analysis			
	and recognition	1		
1.2	Objective	6		
1.3	Scope of the work	6		
1.4	Problem Statement	7		
1.5	Outline Thesis	9		

II. LITERATURE REVIEW

2.1	Introduction	10
2.2	Research of various methods	11

C Universiti Teknikal Malaysia Melaka

2.3	Practically used		
2.4	Shape Characterization	15	
	2.4.1 Perimeter	15	
	2.4.2 Area	17	
	2.4.3 Centroid	18	
2.5	Basic of Image Processing	19	
2.6	Matlab For Image Processing		

III. METHODOLOGY

3.1	Introduction		
3.2	Overa	ll System	25
3.3	Development Process		
	3.3.1	Flow Chart of Project	26
	3.3.2	Flow Chart of Programming	
		-Sliding Window	28
	3.3.3	Flow Chart of Programming	
		-Centroid	29
3.4	Comm	nands	30
	3.4.1	Image Acquisition	30
	3.4.2	Image Storing	34

IV. RESULT AND DISCUSSION

4.1	Introduction		35
4.2	Testin	g on the images	35
	4.2.1	Simulation using image	35
		created by software Paint	
	4.2.2	Simulation using image	40
		created by software Paint	
		with unwanted noise	

	4.2.3	Simulation using image	43
		taken using digital camera	
		without filter	
	4.2.4	Results using image taken	48
		by digital camera with filtering	
	4.2.5	Simulation using image taken	52
		by digital camera with better	
		direction with filtering	
	4.2.6	Simulation using image taken	57
		by digital camera with constant	
		background	
	4.2.7	Simulation using image with	60
		sliding window method	
4.3	Analy	sis Overall Result	
	4.3.1	Processing time	63
4.4	Discu	ssion	63

V. CONCLUSION

5.1	Summary	64
5.2	Conclusion	64
5.3	Recommendation for future project	65
5.4	Commercialization or Industrial Potential	65

66

67

REFERENCES

APPENDICES

xi

LIST OF TABLES

Table 1.1	Shape analysis applications	4
Table 2.1	Task List for Shape	10
Table 2.2	Pixel value conventions	14
Table 2.3	Perimeter of Shapes	15
Table 2.4	Area of Shapes	17

NO

TITLE

PAGE

LIST OF FIGURES

NO	TITLE	PAGE
Figure 1.1	Typical shape analysis tasks and their organization into	
	three main classes	2
Figure 1.2	Shape detection involves locating the objects of	
	interest in the image	7
Figure 1.3	Shape detection involves locating the objects of interest	
	in the real image.	8
Figure 1.4	Shape detection involves locating the objects of interest	
	in the real image taken from digital camera.	8
Figure 2.1	Block diagram of a decision theoretic pattern classifier	11
Figure 2.2	Radial Basis Function Networks	13
Figure 2.3	Hidden Units	13
Figure 2.4:	The boundary concept	14
Figure 2.5	Centroid of a shape	18
Figure 2.6:	Shape matching finding the correct corresponding points	
	between a given shape A and a target shape B.	19
Figure 2.7	Noise present in the image.	20
Figure 2.8	Sliding Window Movement	21
Figure 3.1	Flow Chart of Project	27
Figure 3.2	Flow Chart of Sliding Window Method	28
Figure 3.3	Flow Chart of Centroid Method	29
Figure 3.4	To read the image in command	30
Figure 3.5	To convert RGB image into grayscale image command	31
Figure 3.6	To threshold the gray image into binary, Crop function is	
	call and the binary image is display command.	31

xiv

Figure 3.7	To invert the binary image command.	32
Figure 3.8	To fill the selected image background command	32
Figure 3.9	To trace the region boundaries in binary image	33
Figure 3.10	Calling Function cropper	33
Figure 3.11	Display the image been cropped	33
Figure 4.1	Original Image	36
Figure 4.2	Grayscale Image	36
Figure 4.3	Binary Image	37
Figure 4.4	Inverted Binary Image	37
Figure 4.5	Filling the background Image	38
Figure 4.6	Trace region boundaries in binary image.	38
Figure 4.7	Result of the image.	39
Figure 4.8	Original Image	40
Figure 4.9	Grayscale Image	40
Figure 4.10	Binary Image	41
Figure 4.11	Inverted Binary Image	41
Figure 4.12	Filling the background Image	42
Figure 4.13	Trace region boundaries in binary image.	42
Figure 4.14	Result of the image.	43
Figure 4.15	Original Image	44
Figure 4.16	Grayscale Image	44
Figure 4.17	Binary Image	45
Figure 4.18	Inverted Binary Image	45
Figure 4.19	Filling the background Image.	46
Figure 4.20	Trace region boundaries in binary image.	46
Figure 4.21	Result of the image.	47
Figure 4.22	Cropped Image	47
Figure 4.23	Original Image	48
Figure 4.24	Grayscale Image	48
Figure 4.25	Binary Image	49
Figure 4.26	Inverted Binary Image	49

PAGE

Figure 4.27	Filling the background Image.	50
Figure 4.28	Trace region boundaries in binary image.	50
Figure 4.29	Result of the image.	51
Figure 4.30	Cropped Image	51
Figure 4.31	Original Image	52
Figure 4.32	Grayscale Image	52
Figure 4.33	Binary Image	53
Figure 4.34	Inverted Binary Image	53
Figure 4.35	Filling the background Image.	54
Figure 4.36	Trace region boundaries in binary image.	54
Figure 4.37	Result of the image.	55
Figure 4.38	Cropped Image	56
Figure 4.39	Original Image and Grayscale Image	57
Figure 4.40	Inverted Binary Image and Inverted Binary Image	57
Figure 4.41	Filling the background Image Trace region boundaries	
	in binary image	58
Figure 4.42	Result of the image.	58
Figure 4.43	Cropped image.	59
Figure 4.44	Original Image	60
Figure 4.45	Grayscale Image	60
Figure 4.46	Binary Image	61
Figure 4.47	Inverted Binary Image	61
Figure 4.48	Tracing using Sliding Window	62
Figure 4.49	Image Detected	62

LIST OF NOTATIONS

Miscellaneous

RBF activation functions

φ

13

LIST OF EQUATIONS

Table 2.3:Perimeter of Shapes	15
Table 2.4:Area of Shapes	17
Figure 2.5:Centroid of a shape	18

LIST OF ABREVIATIONS

RBF	-	Radial Basis Function	
JPEG	-	Joint Photographic Experts Group	
GIF	-	Graphics Interchange Format	
Bitmap	-	Microsoft Windows Bitmap	
TIFF	-	Tagged Image File Format.	
PNG	-	Portable Network Graphic	

LIST OF APPENDIX

APPENDIX A-SOURCE CODE

67

CHAPTER I

INTRODUCTION

1.1 INTRODUCTION TO SHAPE ANALYSIS AND RECOGNITION

Shape analysis and recognition using computers always encounter many problems. In fact, the computational shape analysis involves several important tasks from image acquisition to shape classification. Shape processing for shape analysis which can be categories into 3 stages which are shape pre-processing, shape transformations and shape classification.

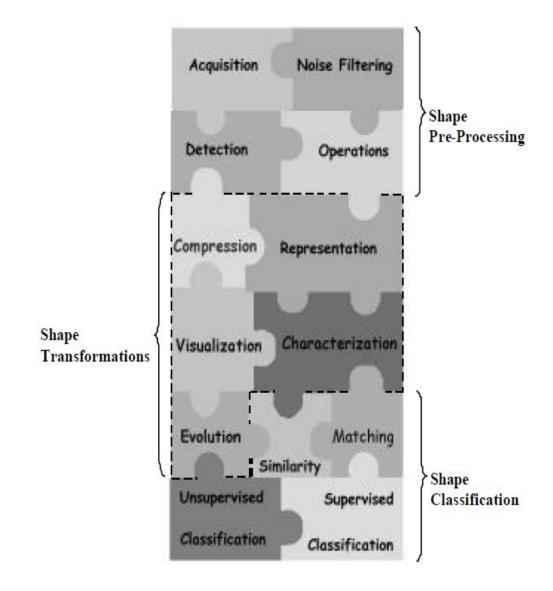


Figure 1.1: Typical shape analysis tasks and their organization into three main classes.

C Universiti Teknikal Malaysia Melaka

Shape Pre-Processing

The first step toward shape analysis of a given object involves acquiring and storing an image of it and separating the object of interest from other unwanted image structures. Furthermore, digital images are usually corrupted with noise and other undesirable effects such as occlusion and distortions. Therefore, it required special procedures to apply the application shape preprocessing.

Shape Transformations

Once the shape of interest has been acquired and processed. Next, the noise has been substantially reduced using some function available in MATLAB. A set of techniques or algorithms can be applied in order to extract information from the shape, so that it can be proceed to analyze potion. Such information in normally extracted by applying suitable shape transformations. Such transformations are mappings that allow both representation of the shape in a more appropriate manner with respect to a specific task and extraction of measures that are used by classification schemes.

Shape Classification

Finally, after shape processing, representation and characterization which often involving feature extraction, classification algorithms are usually applied in order to assign a class to each considered shape. There are two particularly important aspects related to shape classification. The first is the problem of is the given an input shape. Later, deciding whether it belongs to some specific predefined class. This can also be thought of as a shape recognition problem is known as supervised classification. The second equally important aspect of shape classification is how to define or identify the involved classes in a population of previously unclassified shapes. This represents a difficult task, and expert knowledge acquisition problems are usually involved. The latter situation is known as unsupervised classification or clustering. Both supervised and unsupervised classification involve comparing shapes which deciding how similar two shapes and how is done, in many situations, by matching important corresponding points of them.

Below are the Fields and examples of application which are using image processing:

Research Field	Examples of Applications	
Neuroscience	Morphological taxonomy of neural cells, investigations	
	about the interplay between form and function,	
	comparisons between cells of different cortical areas and	
	between cells of different species, modeling of	
	biologically realistic cells, and simulation of neural	
	structures	
Document Analysis	World Wide Web(WWW), Optical Character Recognition	
	(OCR), multimedia databases, and historical documents	
Visual Arts	Video restoration, special effects, video tracking, games,	
	computer graphics, visualizations, and image synthesis	
Internet	Content-based information retrieval, watermarking,	
	graphic design and usability,	
Medicine	Tumor recognition, quantification of change and/or	
	deformation of anatomical structures (e.g.,endocardial	
	contour of left ventricle of heart, corpus callosum),	
	morphometric analysis for diagnosis (e.g., multiple	
	sclerosis and Alzheimer's disease), numerical analysis of	
	chromosomes, identification of genetic pathologies,	
	laparoscopy, genetic studies of dentofacial morphology.	
Biology	Morphometric-based evolution comparison, taxonomy,	
	interplay between form and function, comparative	
	anatomy, cytology, identification and counting of cells	
	(e.g., white blood cells), characterization of cells and	

Table	1.1:	Shape	analysis	applications
-------	------	-------	----------	--------------

	nuclear shapes, growth and shape modifications, analysis	
	of human gait, analysis of electrophoretic gels,	
	microscopy	
Physics	Analysis of particle trajectories, crystal growth, polymers,	
	characterization of star clusters in astronomy, several	
	types of microscopy	
Engineering	Semiconductors, quality control, danger detection,	
	machine interpretation of line drawings, computer aided	
	design of mechanical parts and buildings, automation,	
	robotics, remote sensing, image and video format	
	standards, spatial exploration,	
Security	Fingerprint/face/iris detection, biometrics, human gait and	
	signature verification	
Agriculture	Harvest control, seed counting and quality control, species	
	identification, fruit maturation analysis,	