IRRIGATION CONTROL SYSTEM USING PLC

NORAZIAH BINTI KHAIDZIR

This report is submitted in partial fulfillment of the requirements for the award for the Bachelor of Electronic Engineering (Industrial Electronics) With Honours.

Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

April 2009

C Universiti Teknikal Malaysia Melaka

MA	LAYSIA 4
KNIK	IL AKA
III TE	
STRATE STATE	/n

UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Sesi Pengajian

2008/2009

Saya NORAZIAH BINTI KHAIDZIR

•

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syaratsyarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan ($\sqrt{}$):

SULIT*

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

TERHAD*

(TANDATANGAN PENULIS)

Alamat Tetap: BT 19, JLN KG SEKOLAH PAYA REDAN 84600 PAGOH MUAR JOHOR

Disahkan oleh;

(COP DAN TANDATANGAN PENYELIA)

MOHD SHAKIR BIN MD SAAT Pensyarah Fakuti Kejuruteraan Elektronik Dan Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka (UTeM) Karung Berkunci No 1752 Pejabat Pos Durian Tunggal 76109 Durian Tunggal, Melaka

Tarikh 97 4 12009

Tarikh: 8 APRIL 2009

"Saya akui laporan ini adalah hasil kerja saya sendiri kecuali ringkasan dan petikan yang tiap – tiap satunya telah saya jelaskan sumbernya."

Alt

Tandatangan : Nama Penulis : NORAZIAH BT KHAIDZIR Tarikh

: 27 APRIL 2009

"I hereby declare that this report is the result of my own work except for quoted as cited in the references"

Signature

Author: NORAZIAH BT KHAIDZIRDate: 27 APRIL 2009

:

C Universiti Teknikal Malaysia Melaka

"Saya akui bahawa saya telah membaca laporan ini dan pada pandangan saya laporan ini adalah memadai dari segi skop dan kuality untuk tujuan penganugerahan Ijazag Sarjana Muda Kejuruteraan ELektronik (Elektronik Industri) Dengan Kepujian"

Tandatangan Nama Penyelia Tarikh

:

annus

: EN MOHD SHAKIR BIN MD SAAT : 27 APRIL 2009 "I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours".

Signature

Supervisor's Name Date

: 27 APRIL 2009

:

C Universiti Teknikal Malaysia Melaka

INI

: EN MOHD SHAKIR BIN MD SAAT

vii

Untuk ayah dan ibu tersayang

ACKNOWLEDGEMENT

First and foremost, I would like to take this opportunity to express my greatest gratitude to my supervisor, Mr. Mohd Shakir bin Md Saat for his guidance, encouragement, support and advices throughout the project. The valuable and inspirational ideas have very much contributed to the success of this undergraduate project.

During the course of development of this project, several problems have been encountered and from the help of a few friends, these problems had been resolved. I would like to take this opportunity to express my thanks to friends for their help, ideas and information that they have provided.

A special thanks to my family who have give me encouragement, support and the strength to keep moving on no matter what the odds and obstacles is ahead

C Universiti Teknikal Malaysia Melaka

ABSTRACT

The purposes of this project are to develop an effective irrigation system for paddy field by using Programmable Logic Control (PLC) especially at KEDAH. This project is allowing the water from the main canal to the secondary canal just press the button to open the valve. Consequently, it can save the energy of human. Besides that, the volumes of water that irrigate to the paddy filed are accurate following the specifications. Before that, the irrigation system still control manually which is the human will open and close the valves to flow the water when get the order from headquarter of MADA. Therefore it wastes the time and makes the paddy damage because late to get the enough of water. Besides that, the volumes of the water probability are not accurate effect from the careless of the human itself. The operators are not able to control the water at every block of paddy field that has more than one of the valves. The main objectives this project is to change the manual system to the automatic system to control the volumes of the water based on the specifications from headquarters of MADA to irrigate from main canal to the secondary canal and next to the paddy field. The programmed of the PLC implemented using CX-Programmer as the programming tool has to be develop. The PLC system is used to ON or OFF the motor to control the gate instead of steering the valves. Besides that, the irrigation system can function in two ways either automatically based on the sensor detection or manually depend on switch ON or OFF. The prototype is design to describe the real paddy field and to observe that the PLC is function properly.

ABSTRAK

Projek ini direka bertujuan membina satu sistem pengairan sawah padi yang dikawal dengan menggunakan Programmable Logic Control (PLC) terutamanya di KEDAH. Projek ini membolehkan air dari main canal mengalir ke secondary canal hanya dengan menekan butang untuk membuka dan menutup valve. Ini secara tidak langsung akan menjimatkan masa dan juga tenaga manusia. Selain itu, isipadu air yang diperlukan juga dapat disalurkan dengan lebih tepat mengikut spesifikasi yang ditentukan oleh pihak MADA. Sebelum ini, sistem pengairan di lakukan dengan secara manual dimana tenaga manusia diperlukan bagi membuka dan menutup valve untuk membenarkan air mengalir apabila mendapat arahan daripada ibu pejabat Mada. Ini secara tidak langsung membuang masa dan mengakibatkan padi akan rosak akibat kekurangan air. Selain itu juga, isipadu air yang alirkan oleh operator kebarangkalian tidak tepat akibat daripada kecuaian operator itu sendiri. Operator juga tidak mampu untuk mengawal pengaliran air di semua blok sawah padi dimana terdapat banyak valve yang perlu dikawal. Objektif utama projek ini adalah menukar sistem manual kepada sistem automatic bagi megawal isipadu air yang akan dialirkan dari main canal ke secondary canal dan seterusnya ke sawah padi adalah mengikut spesifikasi yg telah ditentukan oleh pihak MADA. Seterusnya, projek ini juga mampu menjimatkan masa dan juga tenaga manusia kerana terdapat lebih dari satu valve yang terdapat setiap blok sawah padi yang hendak dikawal. Aturcara bagi PLC ditulis berdasarkan turutan air itu mengalir dan seterusnya simulasi dijalankan dengan menggunakan CX-Programmer dan PLC Training Kit bagi mendapatkan output yang dikehendaki. Prototaip direka bagi menggambarkan keadaan sebenar sawah padi dan melihat sistem PLC tersebut beroperasi dengan betul.

CONTENTS

CHAPTER	TITLE	PAGE
	PROJECT TITLE	i
	RECOGNITION	iv
	SUPERVISOR RECOGNITION	v
	DEDICATION	vi
	ACKNOWLEDGEMENT	vii
	ABSTRACK	viii
	ABSTRAK	ix
	TABLE OF CONTENTS	X
	LIS OF FIGURES	xi-xiii
	LIST OF ABBREVIATION	xiv
	LIST OF APPENDIXES	XV

CHAPTER I INTRODUCTION

1.1	Introduction of the Project	1
1.2	Project Objectives	3
1.3	Project Statements	3
1.4	Scope of projects	4
1.5	Methodology.	4

CHAPTER II

LITERATURE VIEW

2.0	Introduction	6
2.1	Irrigation Management System	7
	Implementation in MADA	
2.2	Crop water demand	10

2.3 Irrigation System Control Implement Nowadays.

CHAPTER III METHODOLOGY

3.1	Projec	t Flow Chart	14
	3.1.2	Software Development	16
	3.1.3	Hardware Development	18
	3.1.4	Combining Software and	20
		Hardware.	

CHAPTER IV HARDWARE DESIGN

4.1	Progra	ammable Logic Controller	22
	4.1.1	PLC programming Language	25
	4.1.2	Programmable Logic Controller	27
		Advantages	
	4.1.3	Components of PLC and the	28
		Function of These Components	
4.2	GRA	FCET	31
	4.2.1	State	32
	4.2.2	Grafcet notation	32
4.3	The d	lesign of Irrigation for paddy field	33
4.4	Comp	ponents That's Used For	36
	Irriga	ation Paddy Field System	
	4.4.1	Relay	36
	4.4.2	Relay socket	39
	4.4.3	Power Window Motor	40
	4.4.4	Toggle Switch	41
	4.4.5	Push Button	42
	4.4.6	LED	44
	©υ	Iniversiti Teknikal Malaysia Melaka	

12

4.4.7 Limits Switch (Float Sensor)

CHAPTER V RESULT

5.1 Software	47
5.1.1 Plc Programming	47
5.2 Simulation	52
5.2.1 Simulation For The Three Level Of	55
Water At Main Canal.	
5.2.2 Simulation Of Switch, Float Sensor	56
and Motor.	
5.3 Hardware Testing.	59
5.3.1 Motor Power Window	59
5.3.2 Led.	61
5.4 Interfaces Between Software And Hardware.	62
5.4.1 Observation The Output	63

CHAPTER VI DISCUSSION AND CONCLUSION

6.1	Discussion	70
6.2	Recommendation	72
6.3	Conclusion	72

REFERENCES

APPENDIXES

73

xii

45

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURE

NO	TITLE	PAGE
1.1	Block diagram irrigation system for paddy field	2
1.2	Block diagram of Irrigation control system using PL	2
1.3	Block Diagram of PLC	3
1.4	Methodology	5
2.1	Master controller	7
2.2	Rainfall and water level	7
2.3	Flow chart showing the layout for data collection and	8
	communication	
2.4	Water balance model for an Irrigation Block	11
2.5	Flow to control the valve to irrigate the water from main	12
	canal to the paddy field.	
3.1	Project Flowchart	15
3.2	Software Flowchart	16
3.3	Hardware Development	18
3.4	Combining Software and Hardware Flowchart	20
4.1	Layout Paddy fields where PLC need to control	22
4.2	Ladder Diagram for Irrigation control system	
4.3	Programmable Logic Control	23
4.4	Example of ladder diagram	25
4.5	PLC block diagram Hardware	27
4.6	Initial Internal State Graphical Symbol Using Grafcet	30
4.7	Internal State Graphic Symbols	31
4.8	The design of irrigation paddy field system	33
4.9	The prototype of irrigation paddy field system	34
4.10	The power window motor is fixing	34
4.11	Wiring systems on the prototype.	35
4.12	Show the rod iron and gate	35

C Universiti Teknikal Malaysia Melaka

v

4.13	Relay	36
4.14	The relays switch connections	37
4.15	Relay socket	39
4.16	Motor power windows	40
4.17	Toggle Switch and symbol	41
4.18	Structure toggle switch	41
4.19	Push button.	42
4.20	Structure of push button.	43
4.21	Symbol push button	43
4.22	LED	44
4.23	Parts on LED	44
4.24	limit switches and float sensor	45
4.25	Symbol limit switch	45
5.1	Grafcet for indicator main canal	47
5.2	Grafcet for Gate 1	47
5.3	Gate 2	48
5.4	Ladder diagram	49
5.5	Ladder diagram	50
5.6	Mnemonic code	51
5.7	CX-Programmer pages	52
5.8	CX-Simulator Debug Console	52
5.9	Download option	53
5.10	Mode Run is clicking to simulate the ladder diagram	53
5.11	Ladder diagram is showing the green line	54
5.12	The internal relay is setting ON condition	54
5.13	Indicator lamps at low level are turn on.	55
5.14	Indicator lamps at medium level are turn on.	55
5.15	Indicator lamps at high level are turn on.	56
5.16	Motor on clockwise when the switch is pressed in a few	57
	second.	
5.17	Motor on counterclockwise.	57
5.18	The motor is turn ON clockwise when the float sensor	58
	between the gate 1 and gate 2 is detected.	
5.19	Motor counterclockwise when float sensor at secondary C Universiti Teknikal Malaysia Melaka	58

5.20	canal is detected. The motor is turn ON counterclockwise when the float	58
	sensorat paddy field is detected	
5.21	Motor is supply 12V	59
5.22	Motor turn clock wise	60
5.23	Motor turn Counterclockwise	60
5.24	Schematic circuits and testing the motor with relay	61
5.25	Schematic circuit and connection to relay	61
5.26	LED schematic circuit	61
5.27	Interfaces between PLC and Prototype	62
5.28	Connections to the PLC	62
5.29	Setting the device and network type	63
5.30	The input and output of PLC is setting.	63
5.31	Change to the work online	63
5.32	The program is downloading to the PLC	64
5.33	Change the operating mode to run mode	64
5.34	Three level of water at main canal	65
5.35	LED red is turn ON	65
5.36	LED orange is turn ON	65
5.37	LED green is turn on	67
5.38	Switches for the motor turn ON	67
5.39	Valve 1 open	67
5.40	Valve 1 close	68
5.41	Valve 2 open	68
5.42	Valve 2 closed	69

LIST OF FIGURE

NO	TITLE	PAGE
1.1	Block diagram irrigation system for paddy field	2
1.2	Block diagram of Irrigation control system using PL	2
1.3	Block Diagram of PLC	3
1.4	Methodology	5
2.1	Master controller	7
2.2	Rainfall and water level	7
2.3	Flow chart showing the layout for data collection and	8
	communication	
2.4	Water balance model for an Irrigation Block	11
2.5	Flow to control the valve to irrigate the water from main	12
	canal to the paddy field.	
3.1	Project Flowchart	15
3.2	Software Flowchart	16
3.3	Hardware Development	18
3.4	Combining Software and Hardware Flowchart	20
4.1	Layout Paddy fields where PLC need to control	22
4.2	Ladder Diagram for Irrigation control system	
4.3	Programmable Logic Control	23
4.4	Example of ladder diagram	25
4.5	PLC block diagram Hardware	27
4.6	Initial Internal State Graphical Symbol Using Grafcet	30
4.7	Internal State Graphic Symbols	31
4.8	The design of irrigation paddy field system	33
4.9	The prototype of irrigation paddy field system	34
4.10	The power window motor is fixing	34
4.11	Wiring systems on the prototype.	35
4.12	Show the rod iron and gate	35

V

🔘 Universiti Teknikal Malaysia Melaka

4.13	Relay	36
4.14	The relays switch connections	37
4.15	Relay socket	39
4.16	Motor power windows	40
4.17	Toggle Switch and symbol	41
4.18	Structure toggle switch	41
4.19	Push button.	42
4.20	Structure of push button.	43
4.21	Symbol push button	43
4.22	LED	44
4.23	Parts on LED	44
4.24	limit switches and float sensor	45
4.25	Symbol limit switch	45
5.1	Grafcet for indicator main canal	47
5.2	Grafcet for Gate 1	47
5.3	Gate 2	48
5.4	Ladder diagram	49
5.5	Ladder diagram	50
5.6	Mnemonic code	51
5.7	CX-Programmer pages	52
5.8	CX-Simulator Debug Console	52
5.9	Download option	53
5.10	Mode Run is clicking to simulate the ladder diagram	53
5.11	Ladder diagram is showing the green line	54
5.12	The internal relay is setting ON condition	54
5.13	Indicator lamps at low level are turn on.	55
5.14	Indicator lamps at medium level are turn on.	55
5.15	Indicator lamps at high level are turn on.	56
5.16	Motor on clockwise when the switch is pressed in a few	57
	second.	
5.17	Motor on counterclockwise.	57
5.18	The motor is turn ON clockwise when the float sensor	58
	between the gate 1 and gate 2 is detected.	
5.19	Motor counterclockwise when float sensor at secondary C Universiti Teknikal Malaysia Melaka	58

5.20	canal is detected. The motor is turn ON counterclockwise when the float	58
	sensorat paddy field is detected	
5.21	Motor is supply 12V	59
5.22	Motor turn clock wise	60
5.23	Motor turn Counterclockwise	60
5.24	Schematic circuits and testing the motor with relay	61
5.25	Schematic circuit and connection to relay	61
5.26	LED schematic circuit	61
5.27	Interfaces between PLC and Prototype	62
5.28	Connections to the PLC	62
5.29	Setting the device and network type	63
5.30	The input and output of PLC is setting.	63
5.31	Change to the work online	63
5.32	The program is downloading to the PLC	64
5.33	Change the operating mode to run mode	64
5.34	Three level of water at main canal	65
5.35	LED red is turn ON	65
5.36	LED orange is turn ON	65
5.37	LED green is turn on	67
5.38	Switches for the motor turn ON	67
5.39	Valve 1 open	67
5.40	Valve 1 close	68
5.41	Valve 2 open	68
5.42	Valve 2 closed	69

LIST OF ABBREVIATION

PLC- Programmable Logic ControlMADA- Muda Agricultures Development and AuthourityRTU- Remote Terminals UnitDID- Department of Irrigation and Drainage

C Universiti Teknikal Malaysia Melaka

LIST OF APPENDIXES

NO	TITTLE	PAGE
Α	Gantt Chart	74
В	Data sheets of components	75
С	Poster	76
D	Pictures	77

C Universiti Teknikal Malaysia Melaka

XV

CHAPTER 1

1

INTRODUCTION

1.1 Introduction of the Project

This project is designed to improve the irrigation control system for paddy field usage in KEDAH. Through this project, the productivity of paddy plant can be increased to optimum level. Nowadays, irrigation control systems in Malaysia are based on the human control. Headquarters MADA will decide how much of the volume of water for one time to irrigate the water to the paddy field. Furthermore, the operator of MADA need to open the valve to irrigate the water based on the information from Headquarters MADA. After that, the operator of MADA will measure manually the level of water at the main canal and secondary canal. Next, the operator will open the valve at the secondary canal to let flow the water to the paddy field. The flow of irrigation system for paddy field is shown in Figure 1.1

Figure 1.1 Block diagram irrigation system for paddy field

This project concerns of designing an intelligence control system to improve irrigation control by using Programming Logic Control (PLC) concept, thus to replace manual control to automatic control. Having more than one valve at one block of paddy field so by using the PLC, all the valves can be controlled effectively. The operator just need to press the button to control the valves based on the volume of water needed and the water level sensor will detect the water and measure the volume of water then valve will be open to let flow the water to the secondary canal and next to the paddy field.

Figure 1.2 Block diagram of Irrigation control system using PLC

C) Universiti Teknikal Malaysia Melaka

1.2 Project Objectives

The objectives of this project are:

- i) To change the manual system to automatic system to control the flow of water to irrigate the water from main canal to secondary canal.
- ii) To provide the volume of water are following the specification that determine by headquarters of MADA.
- iii) To provide the effectively and systematic irrigation system for paddy field.
- iv) To save human energy because more than one valve have to control.

1.3 Problem Statement

This project is purposely designed to improve irrigation system for paddy field in Malaysia, present in KEDAH area. The effectively irrigation will increase the production of paddy hence income with the planting of two crops of paddy where only a single had been planted before.

However, the irrigation control system in Malaysia still uses human expertise to control the valve to irrigate the water to the paddy field. MADA operator will open the valve manually based on the information from headquarters. Sometimes, the volume of the water are not accurate because the careless of human and less energy of human to control the valve and pressure of the water. Overflow and less of the