'I admit that had read this thesis and in my opinion this thesis was satisfied from the aspect of scope and quality for the purpose to be awarded Bachelor of Mechanical Engineering (Design and Innovation)'

Signature

Name of Supervisor I

Date

: MASJURI B. MUSA @ OTHMAN

. 17 MAY 2010

Signature

Name of Supervisor II

Date

12-05-201D

FEASIBILITY STUDY AND DESIGN DEVELOPMENT ON AUTOMATIC FEEDER'S MECHANISM FOR GOAT BREEDING

MOHAMMAD AZIM SHUKRI BIN MOHD KAMAL

This report is submitted in accordance with requirement for the Bachelor Degree of Mechanical Engineering (Design & Innovation)

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

APRIL 2010

STUDENT DECLARATION

I declare that this final year project report entitled "Feasibility study and design development on Automatic Feeder's Mechanism for goat breeding" is my own work except as cited in the reference.

Signature :

Name : Mohammad Azim Shukri B. Mohd Kamal

I/C No. : 850410-01-6437

Student ID : B040710077

Date : 7 April 2010

DEDICATION

For my beloved mom and dad

ACKNOWLEDGEMENT

By the name of ALLAH, the Most Gracious and Most Merciful

Due to completion of this final year project (1) report writing, I am deeply indebted to my respected supervisors, Mr. Masjuri Bin Musa of Universiti Teknikal Malaysia Melaka (UTeM) for the encouragement, motivation, constructive criticism and beneficial guidance which led me through this period. I would also like to thank Mr. Nazri Bin Md Daud as a coordinator of FYP for giving me an opportunity and continuous guidance during finishing the project.

Deep gratitude goes to multitude of my colleagues and UTeM staff who have contributed their aid in some manner, especially Mechanical Engineering Faculty staff. Not to forgot, all goat farmer shelf that have given full co-operation during the research process.

Lastly, I would like to take this opportunity to thank everyone who involved directly or indirectly during this process on completing this project. Only ALLAH S.W.T could bestow all of you with His bless and kindness, handsomely reward for your contributions.

Thank you

ABSTRACT

As to complete the course of Bachelor's (Hons) Mechanical Engineering, this PSM (Projek Sarjana Muda) is one of the requirement. It is one of the subjects that offered by Mechanical Engineering Faculty (FKM) to all final year students. This project was done individual and supervised by a FKM's lecturer. This PSM was one of the condition of UteM to award student degree. This purpose of the project is to create technical research for undergraduate students which have high potential in technical paper publication. This study is aimed to design and analyse a Automatic goat feeder's. Two method will be used to carry out this study is analytical and simulation method. Study were made considering goat features, goat shed condition, his nutrition and types of automatic feeder that have been in market earlier. Considering all factor, some concepts were created by using several methods. Between that method is Morphology Chart. Morphology method is use to generate the concepts. After several concept created, concept superlative will selected through screening and scoring method, where concept valuation depend on several factor such as ergonomics, aesthetic etc. After getting the best concept of screening and scoring methods, detailed studies have been done in designing and developing the concept was selected and further analysis is performed to obtain the safety factor for each mechanism used in the project of automatic goat feeders.

ABSTRAK

Sebagai memenuhi kursus Ijazah Sarjana Muda (Kepujian) Kejuruteraan Mekanikal, PSM (Projek Sarjana Muda) adalah satu kemestian bagi semua pelajar. Ia merupakan salah satu matapelajaran yang ditawarkan oleh Fakulti Kejuruteraan Mekanikal (FKM) untuk semua pelajar tahun akhir. Projek ini dilakukan secara individu dan diselia oleh pensyarah FKM. Projek Sarjana Muda ini juga adalah salah satu syarat UTeM untuk penganugerahan ijazah kepada pelajar. Projek ini adalah bertujuan mewujudkan penyelidikan teknikal untuk pelajar prasarjana yang mempunyai potensi besar dalam penerbitan kertas teknikal. Kajian ini adalah bertujuan untuk merekabentuk dan menganalisis sebuah alat penyuap makanan kambing secara automatik. Dua kaedah akan digunakan untuk menjalankan kajian ini adalah kaedah analitikal dan kaedah simulasi. Kajian telah dibuat dengan mengambil kira ciri-ciri kambing, keadaan kandang, pemakanannya serta jenis-jenis alat penyuap automatik yang telah ada di pasaran. Dengan mengambil kira segala faktor, beberapa konsep telah dicipta dengan mengunakan beberapa kaedah. Antara kaedah tersebut adalah Carta Morfologi. Daripada kaedah carta morfologi idea-idea tercetus dalam menghasilkan beberapa konsep. Selepas beberapa konsep tercipta, konsep yang yang terbaik akan dipilih melalui kaedah pemeriksaan dan pemarkahan, di mana penilaian sesebuah konsep bergantung kepada beberapa faktor seperti ergonomik, aestatik dan sebagainya. Selepas mendapat konsep terbaik daripada kaedah pemeriksaan dan pemarkahan, kajian terperinci telah dilakukan dengan merekabentuk dan membangunkan konsep yang telah dipilh dan seterusnya analisa dibuat untuk mendapatkan faktor keselamatan bagi setiap mekanisma yang digunakan dalam projek penyuap makanan automatik kambing ini.

TABLE OF CONTENTS

CHAPTER	TITI	L E	PAGE
	DEC	CLARATION	i
	DED	OICATION	ii
	ACK	NOWLEDGEMENT	iii
	ABS'	TRACT	iv
	ABS'	TRAK	V
	TAB	LE OF CONTENT	vi
	LIST	T OF TABLE	xii
	LIST	T OF FIGURE	xiii
	LIST	T OF CHART	xvi
	LIST	T OF SYMBOLS, ABBREVIATION AND	
	TER	MINOLOGY	xvii
	LIST	T OF APPENDIX	xviii
1	INTI	RODUCTION	
	1.1	General	1
	1.2	Problem Statement	2
	1.3	Objective	3
	1.4	Scope	3
	1.5	Flow Chart	4

CHAPTER	TITI	LE		PAGE
2	LITERATURE REVIEW			
	2.1	Introd	uction of Automatic Feeder	6
	2.2	Goats		7
		2.2.1	A healthy goat	8
		2.2.2	Goat Statistics	8
	2.3	Types	and Goat Features Pet	9
		2.3.1	Barbados Blackbelly	9
		2.3.2	Dorper	10
		2.3.3	Anglo Nubian	11
		2.3.4	Damara	12
		2.3.5	Kalahari Red	13
		2.3.6	Boer	14
		2.3.7	Jamnapari	15
	2.4	Goat S	Shed	16
	2.5	Feed I	Mangers	18
	2.6	Type	of Automatic Feeder Were	
		Use in	the Market	19
		2.5.1	Automatic Fish Feeder	19
		2.5.2	Automatic Horse Feeder	20
		2.5.3	Automatic Cat feeder	21
		2.5.4	Automatic Dog Feeders	22
		2.5.5	Automatic Goat Feeders	23
	2.7	Mecha	anism Part	24
		2.7.1	Conveyor	24
		2.7.2	Bearing	25
			2.7.2.1 Nomenclature of a ball bearing	26
		2.7.3	Timer	27

CHAPTER	TITLE		PAGE	
		2.7.4	Valve	28
	2.8	Food	and Beverage	28
		2.8.1	Silage	31
		2.8.2	Goat food example	33
3	MET	HODO	LOGY	
	3.1	Introd	uction	34
	3.2	Resea	rch Methodology	35
	3.3	Litera	ture Review	36
	3.4	Need		37
	3.5	Conce	eptual Design	38
		3.5.1	Analysis Activity	39
		3.5.2	Component Description Products	41
		3.5.3	Functional explanation products	41
		3.5.4	Alternatives concept generation	41
		3.5.5	Analyze Concept of Alternatives	42
		3.5.6	Concept of Alternatives Assessment	42
	3.6	Confi	guration Design	43
		3.6.1	Products Configuration	45
		3.6.2	Configuration Parts	45
	3.7	Param	netric Design	46
		3.7.1	Problem Formulation	46
		3.7.2	Generate Alternative Design	46
	3.8	Detail	ed Design	47
		3.8.1	CATIA	48

CHAPTER	TITI	LE		PAGE
		3.8.2	Finite Element Analysis (FEA)	49
		3.8.3	Stress Analysis	50
		3.8.4	Von Mises	51
		3.8.5	Selection of Materials/Material Properties	52
4	CON	CEPT 1	DESIGN	
	4.1	Introd	uction	53
	4.2	Morp	hology Chart	54
	4.3	Conce	eptual Design	56
		4.3.1	Concept 1	56
		4.3.2	Concept 2	57
		4.3.3	Concept 3	58
		4.3.4	Concept 4	59
		4.3.5	Concept 5	60
		4.3.6	Concept 6	61
		4.3.7	Concept 7	62
	4.4	Conce	ept Evaluation (PUGH Method)	64
		4.4.1	The three best concept of PUGH method	67
			4.4.1.1 Concept 2	67
			4.4.1.2 Concept 6	67
			4.4.1.3 Concept 7	68
		4.4.2	Concept Evaluation	
			(Weighted Rating Method)	69
		4.4.3	The Three Best Concept Of	
			Weighted Rating Method	72
			4.4.3.1 Concept 1	72
			4.4.3.2 Concept 6	72

CHAPTER	TITI	LE		PAGE
			4.4.3.3 Concept 7	73
		4.5	Champion Concept	74
5	DES	IGN AN	ALYSIS	
	5.1	Introd	uction	75
	5.2	Drawi	ng Part	76
		5.2.1	Refill Tank	76
		5.2.2	Refill Tank Lid	77
		5.2.3	Distributor Tank	78
		5.2.4	Pulley	79
		5.2.5	Post Guide	80
		5.2.6	Refill Tank Holder	81
		5.2.7	Goat Shell	82
		5.2.8	Feed Mangers	83
		5.2.9	Conveyor	84
		5.2.10	Bearing	85
		5.2.11	Throttle Valve	86
		5.2.12	Slider	87
	5.3	Assem	nbly Drawing	88
	5.4	Analy	sis	88
		5.4.1	Analysis on Tank Holder	89
		5.4.2	Refill Tank	91
		5.4.3	Distributor Tank	93
	5.5	Analy	sis on Conveyor (Calculation)	96
	5.6	Summ	arv	100

CHAPTER	TITLE	PAGE
6	DISCUSSION	
	6.1 Introduction	101
	6.2 Result from the Analysis	102
7	CONCLUSION	103
	REFERENCE	105
	BIBLIOGRAPHY	107

LIST OF TABLES

NO	TITLE	PAGE
2.1	Information about goat nutrient	
	(Source: J. Paul Mueller et al 2000)	32
3.1	Material Properties	
	(Source: Ferdinand P. Beer et al. 2006)	52
4.1	Morphology Chart	
	(Karl T. Ulrich, Steven D. Eppinger.2008)	54
4.2	Morphology Chart (cont)	
	(Karl T. Ulrich, Steven D. Eppinger.2008)	55
4.3	PUGH method (Karl T. Ulrich, Steven D. Eppinger.2008)	64
4.4	Weighted rating method	
	(Karl T. Ulrich, Steven D. Eppinger.2008)	69
4.5	Weighted rating method (cont)	
	(Karl T. Ulrich, Steven D. Eppinger.2008)	70
4.6	Weighted rating method guideline	
	(Karl T. Ulrich, Steven D. Eppinger.2008)	71
5.1	Material properties for tank holder	90
5.2	Material properties for refill tank	92
5.3	Material properties for distributor tank	94
5.4	Conveyor data specification	98

LIST OF FIGURES

NO	TITLE	PAGE
2.1	Barbados Blackbelly	8
2.2	Dorper	9
2.3	Anglo Nubian	10
2.4	Damara	11
2.5	Kalahari Red	12
2.6	Boer	13
2.7	Jamnapari	14
2.8	Goat Shed	15
2.9	Goat stalls	16
2.10	Route of goat shed	16
2.11	Feed Mangers	17
2.12	Automatic fish Feeder	
	(Source: www.saltaquarium.com)	18
2.13	Automatic Horse Feeder	
	(Source: www.quickfeed.com)	19
2.14	Automatic Cat Feeder	
	(Source: www.automaticcatfeeder.us)	20
2.15	Automatic Dog Feeder	
	(Source: www.fetchdog.com)	21
2.16	Automatic goat feeder	
	(Source: www.diamondfeeders.com)	22

NO	TITLE	PAGE
2.17	Common conveyor	
	(Source: www.richmondengineering.com)	23
2.18	Common ball bearing	
	(Source: NSK (2001) "Mechanicals: machine	
	component and system")	24
2.19	Nomenclature of a ball bearing	
	(Source: Richard G. Budynas (2008) "Mechanical	
	Engineering Design" 8 th Ed. Mc Graw Hill. Pg 551)	25
2.20	Timer	26
2.21	valve (Source: www.airlink-compressors.co.uk)	27
2.22	Silage (Source: www.wikipedia.org)	30
2.23	Goat Food	32
3.1	CATIA software	48
3.2	FEA sample (Source: COSMOSWorks)	49
3.3	Stress Analysis	50
3.4	The von Mises yield surfaces in principal stress coordinate	S
	(Source: www.wikipedia.org)	51
4.1	Concept 1	56
4.2	Concept 2	57
4.3	Concept 3	58
4.4	Concept 4	59
4.5	Concept 5	60
4.6	Concept 6	61
4.7	Concept 7	62
4.8	Best concept (concept 2)	67
4.9	Best concept (concept 6)	67
4.10	Best concept (concept 7)	68
4.11	Best concept (concept 1)	72
4.12	Best concept (concept 6)	72

NO	TITLE	PAGE
4.13	Best concept (concept 7)	73
4.14	Champion concept (concept 7)	74
5.1	Refill tank	75
5.2	Refill tank lid	76
5.3	Distributor tank	77
5.4	Pulley	78
5.5	Post guide	79
5.6	Holder refill tank	80
5.7	Goat shell	81
5.8	Feed mangers	82
5.9	Conveyor	83
5.10	Bearing	84
5.11	Throttle valve	85
5.12	Slider	86
5.13	Overall system of automatic goat feeder	87
5.14	Force acting on tank holder	88
5.15	Von mises stress analysis on tank holder	89
5.16	Force acting on refill tank	90
5.17	Von mises stress analysis on refill tank	91
5.18	Force acting on distributor tank	92
5.19	Von mises stress analysis on distributor tank	94
5.20	Conveyor	95
5.21	Motor conveyor	96
5 24	Conveyor belt horizontal	97

LIST OF CHART

1.1	Cost for goat farmer	2
1.2	Flow Chart	4
3.1	Five phase in design process	35
3.2	Formulation process of design problem	37
3.3	Deciding activities conceptual design	40
3.4	Configuration design, from products to part	44
3.5	Phase of detailed design	47

LIST OF SYMBOLS, ABBREVIATION & TERMINOLOGY

OPF = Oil Palm Frond

PKE = Palm Kernell Expeller

DFA = Design for Analysis

DFM = Design for Manufacturing

PDS = Product Design Specification

PLC = Programmable Logic Control

QFD = Quality Function Deployment

LIST OF APPENDIX

NO.	TITLE	PAGE
1	PSM 1 Gantt chart	108
2	PSM 2 Gantt chart	109
3	Drafting	110

CHAPTER 1

INTRODUCTION

1.1 General

Goats come in many different types, sizes, colors and breeds, and each of these has their own specific characteristics. In recent years, the goat has received considerable attention in the world and has become the main component in many livestock animal improvement programs in less developed countries. This interest stems from the increase in the worldwide demand for goat meat and from the adaptability, productivity and carcass quality of the goat.

New Zealand has a large population of native goats which roam unrestrained through the wooded hill country and mountain scrubland of both islands. These goats derive from the original imports of British milch goats introduced in the late eighteenth century to provide sustenance for whalers and sealers prior to New Zealand's colonization. Over time they have been supplemented by escaping domestic goats and farmed goats turned loose into unproductive scrubland during times of agricultural adversity, particularly the depressions of the 1890's and 1930's.

Although our world fast developing in technology, there is still little matter do not get technology touch such as food offering process to livestock goat. Nowadays, goat farmer shelf still uses manpower to feed the goat. Therefore, the usage of automatic feeder's mechanism will accelerate the speed off food offering process and can reduce manpower cost.

Whether they not able to check on their goat several times a day, or goat farmer simply want to make sure that he is not left wanting, these feeders make sure their goat doesn't miss meal time. Their goat is happy, knowing that his scheduled meal will be there on time and they have the peace of mind knowing that their goat is well fed and taken care of.

1.2 Problem Statement

Although our world fast developing in technology, there is still little matter do not get technology touch such as food offering process to livestock goat. Nowadays, goat farmer shelf still uses manpower to feed the goat. With punitive food for goat cost was increase, there was an effort were underway to find alternative. Beside grass grant and leaves, grant palette able to ease burden especially to farmer which had no big area for grass crop or farmer which had no enough labor force to work grass crop area. Palette from OPF (Oil Palm Frond) can be made alternative material to feed the goat. Apart from that there are several problems again faced by goat farmer shelf such as and revealed the problem in the chart 1.1 below:

- Time to feed goat was haphazard nicely.
- Require lot of work force if having a lot of goat.
- Food feeders damaged and often need tertiary care.
- The automatic feeder for goat was too expensive.

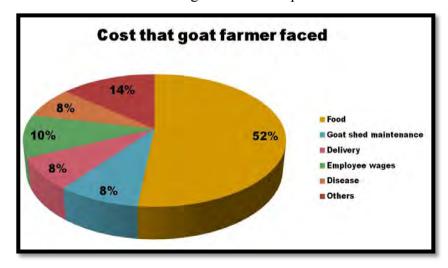


Chart 1.1: Cost for goat farmer

1.3 Objective

The goals of this proposed project title are:

- To study the goat nutrition behavior.
- To study the problem that goat farmer faced.
- To study the type of food that good for goat breeding.
- To design an automatic feeder's mechanism for goat breeding.
- To do analysis on automatic feeder's mechanism.

1.4 Scope

For the scope of this project in encircle:

- Literature study on automatic feeder's mechanism for goat breeding.
- Design the automatic feeder's mechanism for goat.
- Analyze the structure and capability of goat automatic feeder's mechanism.

1.5 FLOW CHART

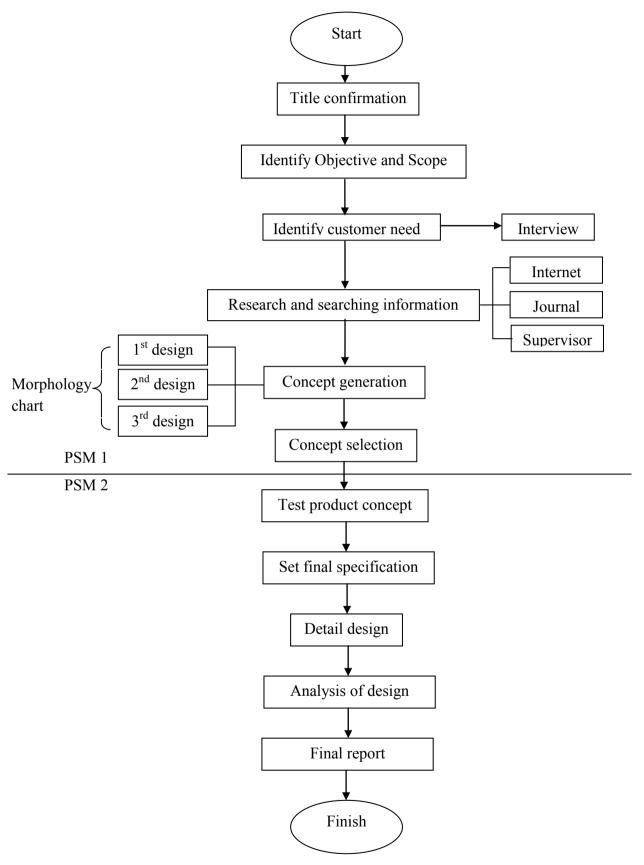


Chart 1.2: Flow Chart