'I admit that have read this report and to my opinion this report fulfill in terms of scope and quality from the bachelor of mechanical engineering (design and innovation)'

		0
Signature		- Juni
Name of supervisor	I	SHAFIZAL B. MAT
Date		18-5-2009

Signature		3
Name of supervisor	п	;
Date		;

ERGONOMICS EVALUATION AND DESIGN OF THE HAND TOOLS USED IN MANUFACTURING INDUSTRIES

AHMAD AIZAT BIN AHMAD RAMLY

This report is submitted in partial fulfillment of the requirements for the Bachelor of Mechanical Engineering (Design & Innovation)

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

APRIL 2009

"Hereby, I declared that this project report has written by me and is my own effort and that no part has been plagiarized without citation"

Signature	:
Name of writer	:
Date	:

ACKNOWLEDGEMENT

First and foremost thanks to Allah S.W.T for giving me the courage, confidence and patience in order to complete this project. I would like to express my gratitude to my supervisor, Mr. Shafizal who guides me through completing this project. He gave me lot of ideas, advises and encouragement that helps me for completing this research.

Lot of thanks to all my friends who help me a lot in generating ideas and information that very useful in this research. Not to forget, my families for their support and blessing.

ABSTRACT

In manufacturing industries the percentage of injuries that occur is higher than other sector. Most of the injuries linked to the used of hand tools. The injuries may cause from the poor design of the hand tools itself. This report presents the findings the redesign an existing hand tools and making analysis on the ergonomics design of the hand tools. By having fully understanding the ergonomics design of the hand tools and CATIA software can be applied together to carry out the new designed which are more safe and ergonomic hand tools. The existing and new design will be compare using 'RULA Analysis' module in CATIA. The particular strength of this research is to reduce injuries in using hand tools by designing an ergonomically well-designed hand tools.

ABSTRAK

Di dalam industri pembuatan, peratusan kecederaan yang berlaku adalah tinggi berbanding dengan sektor yang lain. Kebanyakan kecederaan berpunca daripada pengunaan peralatan tangan. Kemalangan tersebut berpunca daripada reka bentuk peralatan tangan yang naif. Laporan ini membentangkan keperluan untuk mereka bentuk kemabali peralatan tangan dan membuat analisa pada reka bentuk peralatan tangan yang ergonomik. Dengan memahami reka bentuk yang ergonomik dan juga perisian CATIA boleh diaplikasikan bersama untuk meraka bentuk peralatan tangan yang tidak merbahaya dan ergonomik. Reka bentuk yang sedia ada dan yang baru dibandingkan dengan meggunakan modul yang terdapat di dalam CATIA. Teras kekuatan kajian ini adalah untuk mengurangkan kecederaan dengan mereka peralatan tangan yang ergonomik.

TABLE OF CONTENTS

CHAPTER	CONTENT	PAGE
	DECLARATION	ii
	ACKNOWLEDGEMENT	iii
	ABSTRACT	iv
	ABSTRAK	V
	TABLE OF CONTENTS	vi
	LIST OF TABLES	xi
	LIST OF FIGURES	xiv
CHAPTER 1	INTRODUCTION	1
	1.1. Background	1
	1.2. Objective	2
	1.3. Scopes	2
	1.4. Problem Statement	3
CHAPTER 2	LITERATURE REVIEW	4
	2.1. Introduction	4
	2.2. Ergonomics	7
	2.2.1 History of Ergonomics	8
	2.2.2. Characteristic of Ergonomics	9
	2.2.3. Cognitive Ergonomics	9
	2.2.4. Physical Ergonomics	10
	2.2.5. Ergonomic Needs	10

2.2	2.5.1.	Important in Ease of Use	10
2.2	2.5.2.	Important in Ease of	10
		Maintenance	
2.2	2.5.3.	User Interactions for the	10
		Products Function	
2.2	2.5.4.	The Novel of The User	11
		Interaction Needs	
2.2	2.5.5.	Safety Issues	11
2.3. Comm	non Wo	orkplace Motions	11
2.3.1.	Good	and Bad Zones	12
2.4. Hand	Tools		15
2.4.1	Histor	y of the Hand Tools	15
2.4.2.	Huma	n Factors and Ergonomics	15
2.4.3.	Reaso	ons that Hand Tools been Created	16
2.4	4.3.1.	Strength	16
2.4	4.3.2.	Penetrability	17
2.4	4.3.3.	Bluntness	18
2.4	4.3.4.	Shortness	18
2.4	4.3.5.	Flexibility	19
2.5. Desig	n Princ	iples	20
2.5.1.	Produ	ict Shape	20
2.6. Hand	Tools I	nvolved	22
2.6.1.	Power	Hand Drill	22
2.6.2.	Saber	Saw	23
2.6.3.	Break	er	24
2.7. CATI	A as a	CAD approach	24
2.8. Hum	an Acti	vity Analysis	25
2.8.1	Huma	n Builder	26
2.8.2	Huma	n Measurements Editor	26
2.8.3	Huma	n Posture Analysis	26

CHAPTER 3	METHODOLOG	GY	27
	3.1. Introduction		27
	3.2. Flow Chart		28
	3.3. Literature Res	search	29
	3.4. Conceptual D	Design	29
	3.4.1. Step 1	: Clarify the Problem	29
	3.4.2. Step 2	: Search Externally	30
	3.4.2.1.	Search Patents	30
	3.4.2.2.	Search Literature	31
	3.4.3. Step 3	: Search Internally	31
	3.4.4. Step 4	: Results	31
	3.5. Computationa	al Modeling and Analysis Using	32
	CATIA		
	3.6. Comparison I	Between the Existing Design and	36
	New Design		
CHAPTER 4	RESULT AND E	37	
	4.1. Introductions	37	
	4.2. Analysis of th	ne Existing Hand Tools	39
	4.2. Analysis of th 4.2.1. Existi	ne Existing Hand Tools ng Power Hand Drill	39 40
	4.2. Analysis of th4.2.1. Existi4.2.1.1.	ne Existing Hand Tools ng Power Hand Drill First Posture Using Existing	39 40 41
	4.2. Analysis of th4.2.1. Existi4.2.1.1.	ne Existing Hand Tools ng Power Hand Drill First Posture Using Existing Power Hand Drill	39 40 41
	4.2. Analysis of th4.2.1. Existi4.2.1.1.4.2.1.2.	ne Existing Hand Tools ng Power Hand Drill First Posture Using Existing Power Hand Drill Second Posture Using Existing	 39 40 41 42
	4.2. Analysis of th4.2.1. Existi4.2.1.1.4.2.1.2.	ne Existing Hand Tools ng Power Hand Drill First Posture Using Existing Power Hand Drill Second Posture Using Existing Power Hand Drill	 39 40 41 42
	 4.2. Analysis of th 4.2.1. Existi 4.2.1.1. 4.2.1.2. 4.2.1.3. 	ne Existing Hand Tools ng Power Hand Drill First Posture Using Existing Power Hand Drill Second Posture Using Existing Power Hand Drill Third Posture Using Existing	 39 40 41 42 43
	 4.2. Analysis of th 4.2.1. Existi 4.2.1.1. 4.2.1.2. 4.2.1.3. 	ne Existing Hand Tools ng Power Hand Drill First Posture Using Existing Power Hand Drill Second Posture Using Existing Power Hand Drill Third Posture Using Existing Power Hand Drill	 39 40 41 42 43
	 4.2. Analysis of th 4.2.1. Existi 4.2.1.1. 4.2.1.2. 4.2.1.3. 4.2.2. Exist 	ne Existing Hand Tools ng Power Hand Drill First Posture Using Existing Power Hand Drill Second Posture Using Existing Power Hand Drill Third Posture Using Existing Power Hand Drill ing Saber Saw	 39 40 41 42 43 45
	 4.2. Analysis of th 4.2.1. Existi 4.2.1.1. 4.2.1.2. 4.2.1.3. 4.2.2. Existi 4.2.2.1. 	he Existing Hand Tools ng Power Hand Drill First Posture Using Existing Power Hand Drill Second Posture Using Existing Power Hand Drill Third Posture Using Existing Power Hand Drill ing Saber Saw First Posture Using Existing	 39 40 41 42 43 45 46
	 4.2. Analysis of th 4.2.1. Existi 4.2.1.1. 4.2.1.2. 4.2.1.3. 4.2.2. Exist 4.2.2.1. 	he Existing Hand Tools ng Power Hand Drill First Posture Using Existing Power Hand Drill Second Posture Using Existing Power Hand Drill Third Posture Using Existing Power Hand Drill ing Saber Saw First Posture Using Existing Saber Saw	 39 40 41 42 43 45 46

	Saber Saw	
4.2.2.3.	Third Posture Using Existing	48
	Saber Saw	
4.2.3. Exist	ing Breaker	49
4.2.3.1.	First Posture Using Existing	50
	Breaker	
4.2.3.2.	Second Posture Using Existing	51
	Breaker	
4.2.3.3.	Third Posture Using Existing	52
	Breaker	
4.3. Analysis of th	ne Redesign Hand Tools	53
4.3.1 Rede	sign Power Hand Drill	53
4.3.1.1.	First Posture Using Redesign	54
	Power Hand Drill	
4.3.1.2.	Second Posture Using Redesign	55
	Power Hand Drill	
4.3.1.3.	Third Posture Using Redesign	56
	Power Hand Drill	
4.3.2 Redes	ign Saber Saw	57
4.3.2.1.	First Posture Using Redesign	58
	Saber Saw	
4.3.2.2.	Second Posture Using Redesign	59
	Saber Saw	
4.3.2.3.	Third Posture Using Redesign	60
	Saber Saw	
4.3.3. Redes	ign Breaker	61
4.3.3.1.	First Posture Using Redesign	62
	Breaker	
4.3.3.2.	Second Posture Using Redesign	63
	Breaker	

	4.3	3.3.2.	Third Posture Using Redesign	64
			Breaker	
	4.4. Compa	arison t	between Existing and Redesign	65
	4.4.1. Comparison for Power Hand Drill			66
	4.4.2. Comparison for Saber Saw			68
	4.4.3.	Comp	parison for Breaker	70
	4.5. Discus	ssion		71
CHAPTER 5	CONCLU	SION .	AND RECOMMENDATIONS	73
	5.1. Conclu	usion		73
	5.2. Recom	nmenda	tions	74
	REFERE	NCES		75
	BIBLIOG	RAPH	Y	78
	APPENDI	ICES		79

LIST OF TABLES

NO	TITLE	PAGE
1.	Numerical values for range of motion (Source: www.allsteeloffice.com/ergo)	14
2.	RULA scoring (Source http://ergo.human.cornell.edu/)	38
3.	RULA scoring for first posture using existing power hand drill	41
4.	RULA scoring for second posture using existing power hand drill	42
5.	RULA scoring for third posture using existing power hand drill	43
6.	RULA scoring for first posture using existing saber saw	46
7.	RULA scoring for second posture using existing saber saw	47
8.	RULA scoring for third posture using existing saber saw	48

9.	RULA scoring for first posture using existing breaker	50
10.	RULA scoring for second posture using existing breaker	51
11.	RULA scoring for third posture using existing breaker	52
12.	RULA scoring for first posture using redesign power hand drill	54
13.	RULA scoring for second posture using redesign power hand drill	55
14.	RULA scoring for third posture using redesign power hand drill	56
15.	RULA scoring for first posture using redesign saber saw	58
16.	RULA scoring for second posture using redesign saber saw	59
17.	RULA scoring for third posture using redesign saber saw	60
18.	RULA scoring for first posture using redesign breaker	62
19.	RULA scoring for second posture using redesign breaker	63
20.	RULA scoring for second posture using redesign breaker	64
21.	Comparison RULA scoring for Power Hand Drill	66

22.	Comparison RULA scoring for Saber Saw	68
23.	Comparison RULA scoring for Breaker	70

LIST OF FIGURES

NO	TITLE	PAGE
1.	Range of motion	13
	(Source: www.allsteeloffice.com/ergo)	
2.	Bolt cutter.	17
	(Source: Charles A. Cacha, 1999)	
3.	Wood saw.	17
	(Source: Charles A. Cacha, 1999)	
4.	Carving knives.	18
	(Source: Charles A. Cacha, 1999)	
5.	Tongs.	19
	(Source: Charles A. Cacha, 1999)	
6.	Power hand drill	22
	(Source: http://home.howstuffworks.com/)	
7.	Saber saw	23
	(Source: http://home.howstuffworks.com/)	
8.	Breaker	24

(Source: www.hilti.com)

9.	Draw an existing product	32
10.	Human builder	33
11.	Drag the product	33
12.	Inserts new manikin	34
13.	Adjust the manikin	34
14.	Human activity analysis	35
15.	RULA analysis	35
16.	Existing power hand drill	40
17.	First posture using existing power hand drill	41
18.	Second Posture using existing power hand drill	42
19.	Third Posture using existing power hand drill	43
20.	Existing saber saw	45
21.	First posture using existing saber saw	46
22		47
22,	Second posture using existing sader saw	4/

23.	Third posture using existing saber saw	48
24.	Existing breaker	49
25.	First posture using existing breaker	50
26.	Second Posture using existing breaker	51
27.	Third Posture using existing breaker	52
28.	Redesign power hand drill	53
29.	First posture using redesign power hand drill	54
30.	Second Posture using redesign power hand drill	55
31.	Third Posture using redesign power hand drill	56
32.	Redesign saber saw	57
33.	First posture using redesign saber saw	58
34.	Second Posture using redesign saber saw	59
35.	Third Posture using redesign saber saw	60
36.	Redesign breaker	61
37.	First posture using redesign breaker	62

38.	Second Posture using redesign breaker	63
39.	Third Posture using redesign breaker	64

CHAPTER 1

INTRODUCTION

1.1 Background

In a large number of industrial occupations, hand tools are primary tools. A major concern of these industries is the higher percentage of injuries that occur annually. In many occupations, some of the major causes of work-related disorder and disease are linked to the use of hand tools. It has shown that tool design may play an important role in development of work related problems in the upper limbs. Poor design of a hand tools may result in cumulative trauma disorders. Occupational accidents can be linked directly to the use of specific hand tools as well.

Ergonomically well design hand tools may reduce the risk of occupational injuries. It is also provide comfortable work for the users and give high product quality to the consumers. As the use of hand tools may play an important role in the developments of disorders and accidents, it is obvious that improvements in the design of hand tools are essential for promoting professional users health, particularly where there is intensive exposure.

1.2 Objective

The main objective of this project is to design and perform ergonomics analysis of hand tools that are used in manufacturing industries.

1.3 Scope

The scopes of this project are;

- i. Study on the literature review of the ergonomics design for hand tools that are used in manufacturing industries.
- ii. Carry out conceptual design of the hand tools.
- iii. Apply the concept of ergonomics in designing the hand tools.
- iv. Study on the drawing tool and analysis tool (RULA analysis) using CATIA.
- v. Carry out an analysis of ergonomics design by using RULA analysis in CATIA.
- vi. Comparison between the existing design and new designs.

1.4 Problem Statement

A major concern of industries is the high percentages of injuries that occur annually. The relationship between occupational musculoskeletal disorders and the use of hand tools is well known. Poor design of hand tools may result in cumulative trauma disorders. Occupational accidents can be linked directly to the use of specific tools. As the use of hand tools plays such an important role in the development of disorders and accidents, this project will try to overcome the problem by designing an ergonomics hand tools. Ergonomically well-designed hand tools used in work situations with balanced work content reduce the risk of occupational injuries of the hand, wrist and forearm. It's also provided comfortable work for the users and gives high product quality to the customers.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Injuries to the human body resulting from the use of hand tools can be classified as cumulative effect trauma or single-incident trauma. Cumulative effect trauma involves progressive damage to the tendons, tendon sheaths and related bones, and nerves of the hand, wrist, elbow and arms, resulting from long-term or improper use of a hand tool (Mital and Sanghavi, 1986).

Although it is impossible to eliminate all injury potential, maybe simple design modifications to the tools can change an unsafe tool into a relatively safe one. Take an example, the innovation of guards on hand tools have proved useful in the prevention of slipping of the hand over the blade and it can reduce the percentage of an injuries.

Mostly cheap tools that widely sold in market nowadays, made from unsuitable materials and poor workmanship. This will contribute to an injury to the users. Some examples include wrenches and spanners which open under normal working pressure, and hammer which chip or shatter when a blow is struk. Also, chisels and punches made of soft material often 'mushroom' with repeated blows, and knives of poor quality will lose their edge.

5

The texture of the tool handle is another important design consideration. Some grips can be improved by increasing the friction between the hand and the handle. The texture of the handle is not merely aesthetic but also functional (Fraser, 1983). A non-slip texture may also abrade the skin of the hands and inhibit adjustment of hand position (Drury, 1980). Design of hand grip should be based on the type of gripping action used (Drury and Pizatella, 1983), and the contact should be maximized as this will minimize shear stress on the skin (Pheasant and O'Neill, 1975).

Handle design for hand tools has been addressed by many authors (Van Cott and Kinkade, 1977; Greenberg and Chaffin, 1979; Woodson, 1981; Konz, 1983; Chaffin and Andersson, 1984; Chaffin, 1991). However, the problem of size and shape in the context of minimizing stress on the user or maximizing tool efficiency has not been well covered. Although considerable work has been done on grip strength, there is limited information about handle size, handle shape, and force capability (Cochran and Riley, 1986).

A few research studies have examined some aspects of handle design. Pheasant and O'Neill (1975) examined various screwdriver handle designs available in the UK and compared them with smooth and rough cylinders. Ayoub and LoPresti (1971) used electromyography in a study to find the optimum size of cylindrical handles for rotational tasks. The result of these two studies compared well. Mital and Channaveeraiah (1988) examined the effect of shape, wrist orientation and duration of repeated exertions on the maximum torque that could be exerted in different postures.

Riley and Cochran (1980) conducted a study on improved knife handle designs. On examining the cross-sectional perimeter of knife handles being used in a meat packing company, they determined that handles were too small. Bobjer (1989) examined the design of knives for the meat packing and processing industry that would reduce cumulative trauma disorders, and yet be comfortable to work with. The result of the work was to design two types of knife, a general-purpose knife and a dagger-grip knife, each of which is fitted with two handle sizes. Cochran and Riley (1986) evaluated two variables affecting the performance of tang guards in preventing injury due to the hand slipping forward on a knife handle. They concluded that the height of the guard has a significant effect for both males and females.

Konz (1986) examined bent hammer handles, suggesting that when a tool gripped with a power grip has its working part extended above the hand, then a curve in the handle may be beneficial.

The classic work by Napier (1965) has distinguished between two discrete patterns of prehensile movement in which an object is held partly or wholly within the compass of the hand. These patterns were defined from both the anatomical and functional point of view. They were termed 'precision grip' and 'power grip'. With the precision grip, the edge is pinched between the flexor aspects of the fingers and the opposing thumb. The power grip occurs when the hand makes a 'fist' with four fingers on one side of the tool grip and the thumb reaching around the other side to 'lock' on the first finger. More recent work has been done to improve the description of the coupling of the hand (Kroemer, 1986). This improved notation gives a better understanding and definition of how the hand interacts with the control. To this end, the precision and power grips are insufficient. As an example of the system proposed by Kroemer, the precision grip is described as the 'thumb-two-finger grip'. Imrhan (1991) looks at the influence of wrist position on different types of pinch strength.

Electromyography has been used for two decades to evaluate industrial designs by quantifying muscle activities (Khalil, 1973), muscular effort, fatigue and the effectiveness of training (Lavender and Marras, 1990).

The problem of obtaining ergonomically designed handles which are sized properly in the context of comfort and safety for the user needs to be addressed with more urgency.