'I/We* hereby declare that this composition has been read and on my/our* opinion this composition is acceptable from the scope and the quality for being awarded Bachelor Degree of Mechanical Engineering (Design and Innovation)'

> Signature 1st Supervisor's Name Date

W?----

MASJURI BIN MUSA BOTHMAN

Signature	
2 nd Supervisor's Name	
Date	······

* Cut where unnecessary

FEASIBILITY STUDY AND CONCEPTUAL DESIGN ON THE AUTOMATIC FISH FEEDER

MOHD AZRUL BIN OMAR

This thesis is submitted in partial fulfillment of the requirements for the dgree of Mechanical Engineering (Design & Innovation)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MAY 2009

C Universiti Teknikal Malaysia Melaka

DECLARATION

"I hereby acknowledge that this report is my own investigation except summaries and citations which every each of it that I state the sources"

Signature	:
Author	:
Date	:

Specially dedicated to my beloved family

ACKNOWLEDGEMENT

I would like to express my gratitude to all those who have helped me in one way or another during the planning, writing and editing stages of this Final Year Project report. I am especially grateful to my supervisor Mr. Masjuri Bin Musa for sharing with me their insights on technical writing and providing me with authentic materials in the form of data and information. I would also like to thank him for his guidance and comments that enable me to improve my Final Year Project report. Finally, I would like to extend my gratitude and appreciation to all my friends for their patience and help during writing this report.

ABSTRAK

Projek ini adalah mengenai kajian tentang pemberi makanan ikan secara automatik. Fungsi utama produk ini adalah untuk memberi makanan ikan secara automatik pada masa yang tepat dan jumlah makanan yang sepatutnya supaya tidak berlaku pembaziran. Pemberian makanan ikan secara automatik juga menjadikan hidup pembela ikan menjadi mudah dan terurus. Kadangakala, kita terlupa sama ada kita telah memberi makanan kepada ikan atau tidak ataupun mungkin ada orang lain dalam kelurga kita yang telah memberi makanan kepada ikan tanpa disedari. Justeru, pemberi makanan ikan secara automatik akan mengatasi masalah terlupa memberi makanan atau terlebih memberi makanan ikan secara serentak. Kehadiran makanan yang terlalu banyak didalam air akan menyebabkan penapis mudah tersumbat, dan menyebabkan kita perlu meluangkan lebih masa untuk membersihkan akuarium. Melalui projek sarjana muda ini, penambahbaikan terhadap pemberi makanan ikan secara automatik yang sedia ada dapat dicapai dengan jaya. Projek pemberi makanan ikan secara automatik ini dianalisis menggunakan perisian Solidworks COSMOSWorks. Analisis yang dijalakan adalah analisis struktur dan analisis pergerakan pada mekanisme pemberi makanan ikan secara automatik.

ABSTRACT

The project relates to a mechanism of automatic fish feeder. The main function of this product is to suit the fish feeding automatically by a machine and feed with the exact time and accurate amount of fish food so that there is no wasting in feeding. By using this gadget, the work to feed the fish become easier and efficient compared before. Automatic fish feeders help make our life as an aquarium owner much easier. It is often hard to remember whether or not we fed the fish, or if someone else in our house did already, and the automatic fish feeder eliminates missed feedings or over feeding altogether. Too much food in the water can easily clog up important filters, and cause us to have to spend more time cleaning our aquarium tank than enjoying it. Via this project, the improvement and enhancement of current automatic fish feeder can be done successfully. The automatic fish feeder will be analyses using Solidworks COSMOSWorks software. The analysis that be done on this design is structural analysis and motion analysis on mechanism.

TABLE OF CONTENTS

CHAPTER	ITE	MS	PAGES
	DEC	CLARATION	ii
	DED	DICATION	iii
	ACK	KNOWLEDEMENT	iv
	ABS	TRAK	V
	ABS	ГКАСТ	vi
	TAB	LE OF CONTENTS	vii
	LIST	Г OF TABLES	xi
	LIST	r of figures	xii
	LIST	Г OF SYMBOLS	XV
	LIST	Γ OF APPENDICES	xvi
1	INT	RODUCTION	1
	1.1	Project Background	1
	1.2	Importance of the Project	2
	1.3	Objectives	2
	1.4	Scopes	3
	1.5	Problem Statement	3
2	LITI	ERATURE REVIEW	4
	2.1	Feeding	4
	2.2	Nutritional Aspect of Growth	7
	2.3	Fish Food	10

	2.3.1	Flake Fish Food	10
	2.3.2	Brine Shrimp	11
	2.3.3	Blood Worms	11
	2.3.4	Shrimp Pellets	12
	2.3.5	Spirulina	12
	2.3.6	Algae Wafers	12
	2.3.7	Frozen Dried Fish Food	13
2.4	Auton	natic Fish Feeders	14
	2.4.1	P21 Automatic Pond Feeder	14
	2.4.2	Rena LG100 Automatic Feeder	16
	2.4.3	Eheim 3581 "Feed-Air" Digital Automatic	17
		Feeder	
	2.4.4	AquaChef Automatic Aquarium Fish	
		Feeder	19
	2.4.5	Directional Broadcast Feeder Fish	20
2.5	Timer		23
	2.5.1	Timer (555 timer IC)	23
	2.5.2	DT-02/7-Day 12 VDC Timer & Housing	25
	2.5.3	TS-10/7-Day Programmable Time Switch	
		24VAC/12VDC	26
	2.5.4	DT-06/24 Volt DC Digital Timer/spdt	
		Switching	27
	2.5.5	TS-08/24-Hour Programmable Time	
		Switch6-24 VDC or AC	28
2.6	Electri	ic Motor	30
	2.6.1	Stepper Motor	30
		2.6.1.1 Unipolar Motors	31
		2.6.1.2 Bipolar Motors	32
	2.6.2	Other Types of Stepper Motor	33
2.7	Gears		34

2.8	Patent	ts	35		
	2.8.1	Automatic Aquarium Feeder Apparatus	36		
	2.8.2	Automatic Fish Feeder	38		
	2.8.3	Directional Broadcast Feeder for Fish and			
		Game	40		
	2.8.4	Fish Feeder with Water Filter and Heater	42		
	2.8.5	Wide Range Fish Feeder	44		
	2.8.6	Automatic Fish Feeder	46		
	2.8.7	Automatic Fish Feeder	48		
2.9	Solid	Works COSMOSWorks	49		
MET	THODO	LOGY	50		
3.1	Metho	odology Flow Chart	50		
3.2	Conce	Conceptual Design			
	3.2.1	Concept 1	53		
		3.2.1.1 Introduction	54		
		3.2.1.2 Sketching	54		
		3.2.1.3 Working Concept	54		
	3.2.2	Concept 2	55		
		3.2.2.1 Introduction	56		
		3.2.2.2 Sketching	56		
		3.2.2.3 Working Concept	56		
	3.2.3	Concept 3	57		
		3.2.3.1 Introduction	58		
		3.2.3.2 Sketching	58		
		3.2.3.3 Working Concept	58		
	3.2.4	Concept 4	59		
		3.2.4.1 Introduction	60		
		3.2.4.2 Sketching	60		
		3.2.4.3 Working Concept	60		

3

	3.2.5	Concept 5		61
		3.2.5.1 Introduction		62
		3.2.5.2 Sketching		62
		3.2.5.3 Working Concep	ot	62
3.3	Desig	n Selection		63
	3.3.1	Introduction		63
	3.3.2	Result		64
DET	AILS D	ESIGN		66
4.1	Desig	n Explanations		67
	4.1.1	Bottom Body		67
	4.1.2	Food Container		68
	4.1.3	Lid		69
	4.1.4	Base		70
	4.1.5	Hollow Stand		71
	4.1.6	90° Connector		72
	4.1.7	Straight Arm		73
	4.1.8	Hook		74
	4.1.9	Feeder Funnel		75
	4.1.10	Helix-shaped Screw Bla	de	76
	4.1.11	Gears		77
	4.1.12	Bolt and Nut		78
	4.1.13	Battery Cover		79
	4.1.14	Bipolar Motor		80
4.2	Full A	ssembly View		82
4.3	Explo	ded View		83
4.4	Full A	ssembly Section View		85
4.5	Comp	onents' Quantity		86
4.6	Mater	ials Selection		87
	4.6.1	Physical Properties		87
	4.6.2	Mechanical Properties		87

4

		4.6.3	Chemical Properties	88
		4.6.4	Classes of Material	88
	4.7	Mater	ials Selection for Automatic Fish Feeder	89
		4.7.1	Specifications of Poly(vinyl chloride) (PVC)	90
		4.7.2	Specifications of Carbon Steel (AISI 1020)	91
		4.7.3	Specifications of Stainless Steel (AISI 36F)	94
		4.7.4	Polyacetal (POM or Acetal)	95
		4.7.5	Poly(methyl methacrylate) (PMMA)	96
	4.8	Worki	ing Concept	96
5	ANA	LYSIS		97
	5.1	Analy	sis	97
		5.1.1	Structural Analysis	98
			5.1.1.1 Procedure Analysis of a Hollow	
			Stand with Base	98
		5.1.2	Analysis with COSMOSMotion 2007	102
			5.1.2.1 Procedures of Analysis Using	
			COSMOSMotion	102
6	RESU	JLTS A	ND DISCUSSIONS	108
	6.1	Result	ts	108
		6.1.1	Analysis of Stand Assembly	108
		6.1.2	Analysis of Hook	112
		6.1.3	Analysis with COSMOSMotion 2007	116
			6.1.3.1 Angular Velocity Analysis	116
			6.1.3.2 Angular Acceleration Analysis	117
	6.2	Theor	etical Calculation	118
		6.2.1	Bending Stress of Stand Assembly	118
		6.2.3	Bending Stress of Hook	120

	6.3	Discussions	122
7	CON	CLUSION AND RECOMMENDATIONS	123
	7.1	Conclusion	123
	7.2	Recommendations	124
	REF	ERENCES	125
	APP	ENDIX A	127
	APP	ENDIX B	128
	APP]	ENDIX C	129
	APP	ENDIX D	130

LIST OF TABLES

NO.

TITLE

2.1	Estimated food consumption by size of a typical	5
	warm water fish	
2.2	Recommended stocking and feeding rates for different	
	size group of tilapia in tanks, and estimated growth rates	6
3.1	Weighted Rating Method	65
4.1	List parts of the automatic fish feeder	84
4.2	Components' quantity	86
4.3	Materials selection for Automatic Fish Feeder	89
4.4	Specifications of Poly(vinyl chloride) (PVC)	91
4.5	AISI 1020	92
4.6	Composition of AISI 1020	92
4.7	Mechanical properties of AISI 1020	93
4.8	Thermal properties of AISI 1020	93
4.9	AISI 316F	94
4.10	Composition of AISI 316F	94
4.11	Mechanical properties of AISI 316F	95
4.12	Thermal properties of AISI 316F	95
6.1	Analysis of Stand Assembly	111
6.2	Analysis of Hook	115
6.3	Comparison between theoretical and experimental values	122

PAGES

LIST OF FIGURES

NO.	TITLE	PAGES
2.1	Flake fish food	10
2.2	Brine shrimp	11
2.3	Blood worm	11
2.4	Shrimp pellets	12
2.5	P21 Automatic Pond Feeder	15
2.6	Rena LG100 Automatic Feeder	16
2.7	Eheim 3581 "Feed-Air" Digital Automatic Feeder	17
2.8	AquaChef Automatic Aquarium Fish Feeder	19
2.9	Directional Broadcast Feeder Fish	21
2.10	Timer (555 timer IC)	24
2.11	DT-02/7-Day 12 VDC Timer & Housing	25
2.12	TS-10/7-Day Programmable Time Switch	
	24VAC/12VDC	26
2.13	DT-06/24 Volt DC Digital Timer/spdt Switching	28
2.14	TS-08/24-Hour Programmable Time Switch6-24 VDC	
	or AC	29
2.15	Unipolar motor structure	31
2.16	Bipolar motor structure	32
2.17	Bipolar motor structure	33
2.18	Gears and Pinion	34
2.19	Automatic Aquarium Feeder Apparatus	36

2.20	Automatic Fish Feeder	38
2.21	Directional Broadcast Feeder for Fish and Game	40
2.22	Fish Feeder with Water Filter and Heater	42
2.23	Wide Range Fish Feeder	44
2.24	Automatic Fish Feeder	46
2.25	Automatic Fish Feeder	48
3.1	Methodology Flow Chart	51
3.2	Concept 1	53
3.3	Concept 2	55
3.4	Concept 3	57
3.5	Concept 4	59
3.6	Concept 5	61
4.1	Bottom body	67
4.2	Food container	68
4.3	Lid	69
4.4	Base	70
4.5	Hollow stand	71
4.6	90° Connector	72
4.7	Straight arm	73
4.8	Hook	74
4.9	Feeder funnel	75
4.10	Helix-shaped screw blade	76
4.11	Gears	77
4.12	Bolt and nut	78
4.13	Battery cover	79
4.14	Bipolar motor	80
4.15	Stacked stepper specifications (Danaher Motion)	81
4.16	Full assembly view	82
4.17	Exploded view	83
4.18	Full assembly section view	85

5.1	COSMOSWorks Manager tab	98
5.2	Define a static study	99
5.3	Material selection	99
5.4	Apply fix restraints and force	100
5.5	Mesh the assembly	101
5.6	Run the analysis	101
5.7	The mechanism part that will analyze	103
5.8	Add-Ins tab	104
5.9	"Motion" menu	104
5.10	IntelliMotion Builder	105
5.11	Intellimotion Builder window	107
6.1	Von Misses stress analysis	109
6.2	Displacement analysis	110
6.3	Strain analysis	111
6.4	Material selection	112
6.5	Von Misses stress analysis	113
6.6	Displacement analysis	114
6.7	Strain analysis	115
6.8	Angular velocity graph	116
6.9	Angular acceleration graph	117
6.10	Cross section view of stand assembly	118
6.11	Cross section view of hook	120

LIST OF SYMBOL

F	=	Fahrenheit
$\delta^{13}C$	=	A measure of the ratio of stable isotopes ${}^{13}C$: ${}^{12}C$
σ	=	Bending stress
n	=	Safety factor

LIST OF APPENDICES

NO.	TITLE	PAGES
A	Gantt Chart	136
В	Sample of Survey Questioner	137
С	Conceptual Design	138
D	Dimension Sheet	139

CHAPTER 1

INTRODUCTION

1.1 Project Background

Nowadays, there are many types of automatic fish feeder in the market. Every type of them has their own advantages, disadvantages, different design, and different mechanism and so on. Automatic fish feeder is one of the gadgets that help user to feed their fish automatically without do it manually everyday. Using this gadget, user only need to set the timer and the gadget will feed their fish automatically according to the user setting. This gadget also helps the person who is willing to travel for a long time, maybe for their business trip or family vocation to feed their fish automatically while they are away. Therefore, they do not need to worry about their fish anymore while they are not around.

The automatic fish feeder is designed to replace a manually fish feeding by a person. Before this gadget was introduced in the market, people have to feed their fish manually and sometimes they miss to feed their fish because they are busy or forgot to do so. For that case, the automatic fish feeder is designed to suit the fish feeding automatically by a machine and feed with the exact time and accurate amount of fish food so that there is no wasting in feeding. At the beginning stage, the design must

consider all aspect that required as a good automatic fish feeder and also environmental friendly.

1.2 Importance of the Project

The significant of this project is to provide a high quality of automatic fish feeder compared to the product that available in the market nowadays. By using this gadget, the work to feed the fish become easier and efficient compared before. Automatic fish feeders help make your life as an aquarium or pond owner much easier. It is often hard to remember whether or not you fed the fish, or if someone else in your house did already, and the automatic fish feeder eliminates missed feedings or over feeding altogether. Too much food in the water can easily clog up important filters, and cause you to have to spend more time cleaning your aquarium tank than enjoying it.

Besides, this design has a high commercial value. Because of the cost of this gadget is not very expansive, everyone can afford for it. This gadget is not too expensive because it uses a simple mechanism to work. Besides, the materials used are easy to obtain. This design also will provide big opportunities towards continuous development on design technique of any similar automatic feeder such as for birds, goats, cows and etcetera.

1.3 Objectives

Objectives are important element in the design. It must be clearly stated and understood to easier the designer to imagine or determine the goal of the project.

To study about automatic fish feeder.

> To design and improve the current automatic fish feeder.

1.4 Scopes

The scopes of the project are as follow:

- > This project focuses on development of a working mechanism.
- The development includes simple analysis to show the effectiveness of the working mechanism using Solidworks COSMOSWorks software.

1.5 Problem Statement

The idea of developing a new automatic fish feeder is because the current automatic fish feeder in the market nowadays very expensive and quiet difficult to handle. The designs of the automatic fish feeder also not meet the customer taste and lack ergonomics.

The main factors that need to consider while choosing and determine the specification of the product are:

- a) Design
- b) Ergonomic
- c) Function

CHAPTER 2

LITERATURE REVIEW

Literature review is needed to get information and detail background that related about the project as such histories, articles and journals. This information is going to use in order to finish the project.

2.1 Feeding

Knowing how much to feed fish without overfeeding is a problem in any type of fish production. Feeding rates are usually based on fish size. Small fish consume a higher percent of their body weight per day than do larger fish (**Table 2.1**). Most fish being grown for food will be stocked as fingerlings. Fingerlings consume 3 to 4 percent of their body weight per day until they reach 1/4 to $\frac{1}{2}$ pound, then consume 2 to 3 percent of their body weight until being harvested at 1 to 2 pounds. A rule-of-thumb for pond culture is to feed all the fish will consume in 5 to 10 minutes. Unfortunately, this method can easily lead to overfeeding. Overfeeding wastes feed, degrades water quality, and can overload the biofilter.

Table 2.2 approximates a feeding schedule for a warmwater fish (e.g., tilapia) stocked into an 84° F recirculating system as fry and harvested at a weight of 1 pound after 250 feeding days. Feed conversion is estimated at 1.5: 1, or 1.5 pounds of feed to obtain 1 pound of gain. **Tables 2.1** and **2.2** are estimate and should be used only as guidelines which can change with differing species and temperatures. Growth and feed conversion are estimated by weighing a sample of fish from each tank and then calculating the feed conversion ratios and new feeding rates from this sample. For example, 1,000 fish in a tank have been consuming 10 pounds of feed a day for the last 10 days (100 pounds total). The fish were sampled 10 days earlier and weighed an average of 0.33 pounds or an estimated total of 330 pounds.

Average we	eight per fish	Body weight consumed
(lbs.)	(g)	(%)
0.02	9	5.0
0.04	18	4.0
0.06	27	3.3
0.25	113	3.0
0.50	227	2.75
0.75	340	2.5
1.00	454	2.2
1.50	681	1.8

Table 2.1: Estimated food consumption by size of a typical warmwater fish. (Source: Southern Regional Aquaculture Centre (SRAC publication no. 452, March '99)

A new sample of 25 fish is collected from the tank and weighed. The 25 fish weigh 10 pounds or an average of 0.4 pounds per fish. If this is a representative sample, then 1,000 fish should weigh 400 pounds. Therefore, the change in total fish weight for this tank is 400 minus 330, or 70 pounds. The fish were fed 100 pounds of feed in the last 10 days and gained 70 pounds in weight. Feed conversion then is equal to 1.43 to 1 (i.e., $100 \div 70$). In other words, the fish gained 1 pound of weight for each 1.43 pounds