"I/we verify that, I/we have read this report and from my/our opinion this thesis have fulfill the scope and quality requirement for Bachelor Mechanical Engineering (Design and Innovation)"

Signature	:
1st Supervisor Name	:
Date	:

Signature	•••••••••••••••••••••••••••••••••••••••	
2nd Supervisor Name	:	
Date	•••••••••••••••••••••••••••••••••••••••	

APPLICATION OF DESIGN OF EXPERIMENT FOR BELL CASTING PROCESS

NURUL FARHA BT ABDUL RAHMAN

This report is submitted to the Faculty Mechanical Engineering in partial to fulfill the requirement for Bachelor Mechanical Engineering (Design and Innovation)

FACULTY OF MECHANICAL ENGINEERING UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APRIL 2009

"I hereby declared that this report is a result of my own work except for the works that have been cited clearly in the references."

Signature	:
Name	: Nurul Farha Bt. Abdul Rahman
Date	:

My parents, supervisor and friends.

ACKNOWLEDGEMENT

First and foremost, my greatest gratitude to ALLAH S.W.T for giving me strength and opportunity to complete this report.

I would like to extend my appreciation to En. Mohd Ruzi bin Hj. Harun for his continuous support, concern, positive criticism and invaluable advice that helped me a lot throughout this project. Special recognition to all of every single especially En. Junaidi, En.Asrul, En. Kamil and individuals that helps me in any kind of assist in my way to finish up my project during my time having problem and difficulties.

Finally, thank you to all individuals and groups who made this project as an exciting education period but are not being mentioned here.

ABSTRAK

Projek ini bertujuan untuk menghasilkan operasi standard yang akan digunakan di bengkel Fakulti Kejuruteraan Mekanikal. Projek ini merangkumi kajian terhadap operasi di dalam *Bell casting* yang mana ianya adalah salah satu operasi di dalam Sand Casting untuk mengenalpasti proses parameter. Tiga faktor kawalan iaitu jenis-jenis paten, masa isian dan suhu tuangan telah dipilih, direka dan diaplikasikan dalam *Taguchi Method* yang mana *Taguchi Method* adalah salah satu aplikasi dalam Minitab. Beberapa eksperimen telah dijalankan mengikut faktor kawalan yang dipilih. Kemudian, data yang diambil daripada eksperimen dimasukkan da dianalisis menggunakan perisian Minitab. Sebagai hasilnya, operasi standard dalam Bell Casting boleh dihasilkan dan digunakan di dalam bengkel FKM.

ABSTRACT

This project aim is to generate Standard of Operation which will be used at the FKM's workshop lab. This project includes the study on operation in Bell casting which is part of the operation in sand casting to identify its process parameters. Three control factors which are type of patterns, filling time and casting temperature have been chosen and been designed and applied in Taguchi Methods in Minitab software application. Several experiments have been carried out according to the control parameter chose. Then, all the data result collected from the experiments was entered and being analyzed using Minitab software. As a result from this software, the Standard of Operation can be generated and thus will be use in FKM's workshop lab.

TABLE OF CONTENT

CHAPTER TITLE

PAGE

DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENT	v
ABSTRAK	vi
ABSTRACT	vii
TABLE OF CONTENT	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF APPENDICES	xiv
ABBREVIATION	XV

1 INTRODUCTION

1.1	Background	1
1.2	Problem Statement	1
1.3	Objectives of project	2
1.4	Scopes of project	2

1.5Significant of Project2

2 LITERATURE REVIEW

2.1	Introduction	3
2.2	Casting	3
2.3	Casting Processes	5

2.4	Sand (Casting and Its Operation	7
	2.4.1	Type of Sand Molds	8
	2.4.2	The Sand Casting Operation	9
	2.4.3	Parameters involved in sand casting	11
		2.4.3.1 Type of sand	11
		2.4.3.2 Solidification of metal	12
		2.4.3.3 Rate of pouring	13
		2.4.3.4 Pouring techniques	13
2.5	Bell C	Casting	14
	2.5.1	The Anchor	15
	2.5.2	The Anvil	16
	2.5.3	The Bell	17
2.6	Minita	ab Software	18
2.7	Desig	n of Experiment (DOE)	19
	2.7.1	Fractional Factorial Design	20
		2.7.1.1 Resolution	20
	2.7.2	The purpose of experimentation	21
	2.7.3	Basis of experimentation	22
	2.7.4	Definition of a designed experiment	22
	2.7.5	The design of experiments process	22
	2.7.6	DOE Process Step Complete	
		Description	25
2.8	Taguc	hi Method	29
	2.8.1	Static Problems	29
	2.8.2	Dynamic Problems	31
2.9	Summ	nary	32

3 METHODOLOGY

3.1	Introd	uction	33
3.2	Metho	odology	33
	3.2.1	Literature Review	34
	3.2.2	Application of Minitab software	34
		3.2.2.1 General Layout	34

			3.2.2.2 Data Type	35
			3.2.2.3 Entering Data	36
			3.2.2.4 Manipulating Data	36
			3.2.2.5 Calculating with Data	37
			3.2.2.6 Saving Data	37
		3.2.3	Application Of DOE Software	38
			3.2.2.1 Steps using DOE software	38
			3.2.2.2 Steps using Taguchi Design in DOE	44
		3.2.4	Experimental on Bell Casting	49
		3.2.5	Result and Discussion	52
		3.2.6	Conclusion	52
	3.3	Projec	t Flowchart	53
	3.4	Gantt	Chart	
		3.4.1	Gantt chart for PSM I	54
		3.4.1	Gantt chart for PSM II	55
4			Y AND EXPERIMENTAL	
	ON E	BELL C.	ASTING	56
5	RES	ULT AN	D DISCUSSION	
	5.1	Introd	uction	57
	5.2	Data F	Results	57
	5.3	Standa	ard of Operation in Bell Casting	63
6	CON	CLUSI	ON AND RECOMMENDATION	
	6.1	Conclu	usion	65
	6.2	Future	Recommendation	65
	DFF	ERENC	FS	66
		ENDICI		68
	AFPI		סע	00

LIST OF TABLES

Table 2.1	Summarize of different types of casting, advantages, disadvantages
	and examples
Table 2.2	Fractional factor resolution and its ability
Table 3.1	Factors studied in Bell Casting experiment
Table 3.2	Half-fraction of 2k-p design
Table 3.3	Gantt chart for PSM I
Table 3.4	Gantt chart for PSM II
Table 5.1	Data results for Bell Casting experiments
Table 5.2	Response Table for Signal to Noise Ratios Dynamic Response
T 11 C 2	

Response Table for Slope Table 5.3

LIST OF FIGURES

- Figure 2.1 Outline of metal casting processes
- Figure 2.2 Outline of production steps in a typical sand-casting operation
- Figure 2.3 Schematic illustrations of the sequences operations for sand casting
- Figure 2.4 Set of Bell casting
- Figure 2.5 The finished, fettled castings: Anchor, anvil and bell
- Figure 2.6 Gate on the anchor in Bell casting
- Figure 2.7 Anvil
- Figure 2.8 Gate on the anvil in Bell casting
- Figure 2.9 Demonstration of the shrinkage in small and large downgate
- Figure 2.10 Gate on the core of the bell on cope
- Figure 2.11 The bell process
- Figure 2.12 Casting process flowchart
- Figure 2.13 Casting process cause-effect diagram
- Figure 2.14 P-Diagram for Static problem
- Figure 2.15 P-Diagram for Dynamic problem
- Figure 3.1 Project's methodology
- Figure 3.2 Main window of Minitab.
- Figure 3.3 Data can be enter manually
- Figure 3.4 Menu for changing data types
- Figure 3.5 Main window of Minitab software
- Figure 3.6 Box where the furnace was heated
- Figure 3.7 Type of pattern chose for factors
- Figure 3.8 Pattern upper part were placed together with under part
- Figure 3.9 Metal being kept to solidify
- Figure 3.10 Project flowchart

- Figure 5.1 Graph of Main Effects Plot for Slopes
- Figure 5.2 Graph of Main Effects Plot for SN Ratios
- Figure 5.3 Graph of Response vs. Time to Melt
- Figure 5.4 Graph of Surface Plot of Time to melt vs Filling Time and Casting Temperature

LIST OF APPENDICES

- Appendix A DOE Process Tasks, Task Aids and who will take the responsibilities
- Appendix B Moulding process of a bell in Bell casting process
- Appendix C Moulding process of an anvil in Bell casting process
- Appendix D Moulding process of an anchor in Bell casting process
- Appendix E Furnace heated more than 6 hours

ABBREVIATION

- FKM Fakulti Kejuruteraan Mekanikal
- DOE Design of Experiment
- B.C Before Century
- OA Orthogonal Array
- C-E Cause Effect
- S/N Signal to Noise
- I/O Input and Output
- ANOVA Analysis of Variance

CHAPTER 1

INTRODUCTION

1.1 Background

In manufacturing process, productivity and quality of casting depend mainly on its process parameters such as casting temperature, filling time, holding pressure, holding time, and cooling rate. To estimate the most influential parameters in casting process, many trial and errors is used to identify the best parameters to manufacture a quality cast product. However, these methods demands extensive experimental work and result in a great waste of time and money. Thus, design of experiment appears to be an important way in estimation the most process parameters and process optimization in Bell casting operation for this project because this method can save both labor cost and time spent.

1.2 Problem Statement

In manufacturing process, many problems may be faced in casting process. Bell casting process was part of the equipment in sand casting process. The quality of casting is not depends on the microstructure, but also supported by the good appearance and the casting process defects related to the process parameters in manufacturing. Failure to control one of the process parameters can lead to give an impact in Bell casting operation. In order to overcome this failure, this project was to estimate the most influential process parameters and process optimization in Bell casting operation.

1.3 Objectives of project

The objective of this project is to estimate the most influential process parameters and process optimization in expandable mold casting which is sand casting using Bell casting operation and equipment.

1.4 Scopes of project

The main scope of this project was:

- 1.4.1 To study Bell casting process and its process parameters.
- 1.4.2 To study DOE and Minitab software.
- 1.4.3 To carry out empirical study on Bell casting process parameters that to be used as a Standard of Operation in FKM's workshop lab.

1.5 Significant of project

To come out with Standard of Operation in Bell casting process parameters that will be use in FKM's lab.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Literature review is the most important step to retrieve information related with the topic chooses. Literature review can be done by searching all the information from internet, journals, books, and other sources. It is important to study or research before starting any development for better understanding regarding the topic chooses.

2.2 Casting

Casting was the oldest method that is available to shape metals into useful products. Casting is a solidification process in which molten metal is poured into a mold and allowed to cool. It's basically involves pouring molten metal into a molten mold cavity where it takes the shape of the cavity. Casting was first used around 4000 B.C to make ornaments, copper arrowheads, and various other things.

As in all manufacturing, each casting process has its own characteristics, applications, advantages, limitations and costs. Casting process are most often selected over other manufacturing methods because casting can produce complex shapes and with internal cavities or hollow sections. From casting, a very large part also can be produced in one piece.

Almost all the metal can be cast in the final shape desired, often with only minor finishing operation required and because of this capabilities, it places casting among the most important net-shape manufacturing technologies. With modern processing techniques and the control of chemical composition, mechanical properties of castings can equal those made by other manufacturing process. Figure 2.1 below cited three methods of metal casting process used in manufacturing.

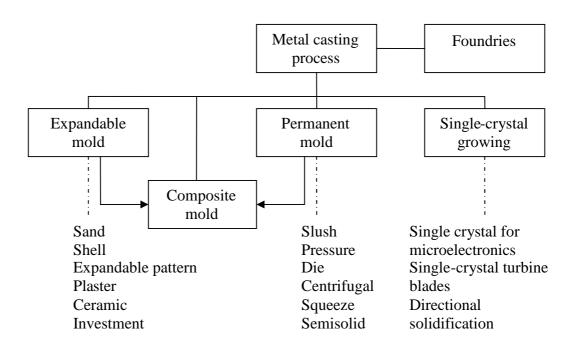


Figure 2.1 Outline of metal casting processes (Source: Serope Kalpakjian & Steven Schmid)

2.3 Casting Processes

Various casting process have been developed over time, each with its own characteristics and applications, to meet specific engineering and service requirements. Large variety of parts and components are made by casting such as engine blocks, crankshafts, automotive components and powertrains.

There are 3 major classifications in casting practices. These classifications are related to mold materials, molding processes and methods of feeding the mold with molten metal.

The major categories are:

a) Expendables molds

It is typically made of sand, plaster, ceramics, and similar materials and generally is mixed with various binders for improved in mechanical, physical and chemical properties.

b) Permanent molds

Permanent mold are made of metals that maintain their strength at high temperatures. As the name implies, they are used repeatedly and are designed in such a way that the casting can remove easily and the mold used for the next casting.

c) Composite molds

Composite molds are made of two or more different materials such as sand, graphite and metal combining the advantages of each material. These molds have a permanent and an expandable portion and are used in various casting process to improved mold strength, control the cooling rates, and optimize the overall economics for casting process.

All casting process, its advantages, disadvantages and examples can be summarized as shown in Table 2.1 below:

Table 2.1 Summarize of different types of casting, advantages, disadvantages and examples

Process	Advantages	Disadvantages	Examples
Sand	Wide range of metals, sizes,	Poor finish, wide	Engine block, cylinder
Sanu	shapes, low cost	tolerance	heads
Shell mold	Better accuracy, finish, higher	Limited part size	Connecting rods, brake
Shen mold	production rate	Emited part size	components
Expandable	Wide range of metals, size,	Patterns have low strength	Cylinder heads, brake
pattern	shape	r auerns nave low suchgur	components
Plaster	Complex shapes, good surface	Non-ferrous metal, low	Prototype of mechanical
mold	finish	production rate	parts
		Ī	I ·····
Ceramic	Complex shapes, high	Small sizes	Impellers, injection mold
mold	accuracy, good finish		tooling
Investment	Complex shapes, excellent	Small parts, expensive	Jewellery
	finish	F F F	· · · · · · · · · · · · · · · · · ·
Permanent	Good finish, low porosity,	Costly mold, simpler	Gears, gears housing
mold	high production rate	shapes only	erente, grant no aonig
Die	Excellent dimensional	Costly dies, small parts,	Precision gear, camera
	accuracy, high production rate	non-ferrous metals	bodies, car wheels
centrifugal	Large cylindrical parts, good quality	Expensive, limited shapes	Pipes, boilers, flywheels

(Source: http://d.scribd.com/docs/1fm1ats4fjks6pn3ksin.pdf) [9]

2.4 Sand Casting and Its Operation

Sand casting was one of other method in casting processes and has been used for millennia. Sand casting is still the most prevalent form of casting. Molten metal is poured into a mold cavity formed out of sand (natural or synthetic). Basically, sand casting consist of placing a pattern in sand to make an imprint, incorporating a gating system, removing the pattern and filling the mold cavity with molten metal, allowing the metal to cool until it solidifies, breaking away the sand mold and lastly removing the casting. Figure 2.2 below illustrate the production flow in a typical sand casting operation.

There were several important factors in the selection of sand for mold with respect to its properties. Sand is fine, round grains that can be pack closely and thus form a smooth mold surface. But fine-grained sand can lower the mold permeability. Good permeability of mold and cores allows gases and stream evolved during the casting to escape easily. Furthermore, mold also should be in good collapsibility to allow the casting to shrink while cooling and to avoid defects in casting such as hot tearing and cracking.

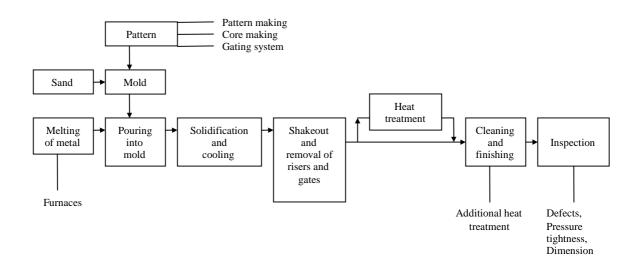


Figure 2.2 Outline of production steps in a typical sand-casting operation (Source: Serope Kalpakjian & Steven Schmid) [1]

7

2.4.1 Type of Sand Molds

Sand mold can be characterized by the types of sand and by the method used to produce them. There are three basic types of sand molds: green-sand, cold-box, and no-bake molds. The most common mold material is green molding sand, which is mixture of sand in the mold is moist or damp while the metal is being poured into it. Green-sand molding is the least expensive method of making molds, and the sand is recycled easily for subsequent use. In the skin-dried method, the mold surfaces are dried, either by storing the mold in air or by drying it with torches. Because of their higher strength, these molds generally are used for large casting.

In the cold-box process, various organic and inorganic binders are blended into the sand to bond the grains chemically for greater strength. These molds are more accurate dimensionally than green-sand mold but are more expensive. In the no-bake mold process, a synthetic liquid resin is mixed with the sand, and the mixture hardens at room temperature. It was called as cold-setting processes because the bonding of the mold in this and in the cold-box process takes place without heat.

Pattern

Patterns are used to mold the sand mixture into the shape of the casting which is typically made out of wood, plastics and sometimes metal. Pattern can be design with a variety of features to fit the specific applications and economic requirements. The pattern design is a critical aspect of the entire total casting process. The design should be provide for metal shrinkage, ease of removal from the sand mold by mean of a taper or draft and proper metal flow in the mold cavity.

Core

Core is a sand shape inserted into the mold to produce the internal features of the part such as holes or internal passages. Cores are placed in the cavity to form holes of the desired shapes. The common problem with core is that they may lack sufficient structural support in the cavity. A riser is an extra void created in the mold to contain excessive molten material. The purpose of this is feed the molten metal to the mold cavity as the molten metal solidifies and shrinks, and thereby prevents voids in the main casting.

2.4.2 The Sand Casting Operation

After the mold had been shaped and the cores have been placed in position, the two halves (cope and drag) are closed, clamped, and weight down to prevent the separation of the mold section under the pressure exerted when the molten metal is poured into the mold cavity. A complete sequence of operation in sand casting is shown in Figure 2.3 below.