STUDY ON THE PERFORMANCE OF CARBON ADSORBENT IN LPG TANK FOR SMALL ENGINE FUELLED BY LPG.

ISMANIZA BINTI ISMAIL

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

STUDY ON THE PERFORMANCE OF CARBON ADSORBENT IN LPG TANK FOR SMALL ENGINE FUELLED BY LPG

ISMANIZA BINTI ISMAIL

This report is written as a partial fulfillment of terms in achieving the award for Bachelor of Mechanical Engineering (Thermal-Fluid)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAC 2008

'I/We approve that we have read this thesis thoroughly and in my/ our opinion, this thesis is has fulfilled the criteria covering all the aspects of scope and quality and satisfied to be awarded for Bachelor of Mechanical Engineering (Thermal-Fluid).'

Signature	
Supervisor I	•
Date	·

Signature	•
Supervisor II	•
Date	•

"I admit that this report is all written by myself except for the summary and the article which I have stated the source for each of them."

Signature	·
Writter	·
Date	·

TO MY BELOVED MOM AND DAD ...

TO ALL MY BEST FRIENDS...

ACKNOWLEDGEMENT

In this great opportunity, I would like to thank Allah for providing me strengths to finish up this project and finally it was completed. Here, I would like to acknowledge with appreciation to all those people who helped me numerously during finish up my project for this year.

In a particular, I would like to express my gratitude to my supervisor, Mr Safarudin Gazali Herawan for giving me a chance to do the project under his guide and attention. I also would like to forward my thanks to Mr Asjufri for giving me lots of guides and advices during implementation of this project. I would also forward my thanks to my second supervisor, Mr Zakaria Nasir who gave me advices and supports too. And not to forget to all panels that evaluated my presentation, a very big thanks to all of you.

Finally, I would like to express my appreciation to everyone especially to all my friends who helped me lots and supported me either. Thanks for your guidance and cooperation. May Allah bless all of you. Amin..

ABSTRAK

Cecair petroleum gas (LPG) digunakan untuk peralatan pemanasan dan juga untuk kenderaan. Pada masa kini, penggunaan LPG sebagai bahan api alternatif untuk kenderaan adalah meluas. Akan tetapi, terdapat beberapa masalah yang timbul apabila menggunakan LPG pada kenderaan. Oleh itu, penyerap carbon digunakan di dalam tangki LPG untuk menambah muatannya. Di dalam projek ini, laporan memfokuskan tentang pembangunan dan persediaan penyerap carbon dengan menggunakan kaedah yang baru dan dibandingkan dengan kaedah yang sebelumnya. Kaedah yang baru tidak menggunakan sebarang gas dalam pembakaran kerana kosnya yang mahal. Oleh itu hasil keputusan daripada kaedah yang baru akan menentukan samada prestasi penyerap carbon adalah lebih efisien atau tidak serta menjimatkan apabila diaplikasikan dalam tangki LPG. Malangnya, keputusan yang diperolehi menunjukan kaedah yang lama lebih baik dalam penghasilan penyerap karbon berbanding kaedah yang baru. Oleh yang demikian, kaedah yang lebih baik perlu digunakan untuk menghasilkan penyerap karbon yang baik dan cara penyediaanya ringkas lagi menjimatkan.

ABSTRACT

Liquefied Petroleum Gas (LPG) is used as a fuel in heating appliances and vehicles as well. Nowadays, the use of LPG as an alternative fuels for vehicles are widely. But somehow, there are several problems arised when applying the LPG for vehicles. So, in order to overcome such problems, the carbon adsorbent is being used in LPG tank for increasing the storage capacity. In this project, the report is more focuses on development and preparation of carbon adsorbent by using the new method compare to the current method by the current research. The result will determine the performance of carbon adsorbent in LPG tank. The new method is more efficient and more saving when applied to LPG tank. The new method is not using any gas in the process as it is costly. Therefore, the performance of carbon adsorbent can be obtained after the results. Unfortunately, results had shown that the current method performed better in producing carbon adsorbent compared to the new one. For the recommendation, it is suggested that a better, simple and more saving method have to be applied.

TABLE OF CONTENT

CHAPTER	TITLE	PAGES
	DECLARATION	ii
	DEDICATION	111
	ACKNOWLEDGEMENT	iv
	ABSTRAK	V
	ABSTRACT	vi
	CONTENT	vii
	LIST OF TABLE	Х
	LIST OF FIGURE	xi
	LIST OF APPENDICES	XV

CHAPTER 1INTRODUCTION1.1Background Research1.2PSM Gantt Chart1.3Problem Analysis1.4Scope and Objective

CHAPTER 2 LITERATURE REVIEW

2.1	Activated Carbon	6
2.2	Source Material	7
2.3	Production	7
2.4	Classifications	9

1

3

4

5

	2.4.1 PAC	9
	2.4.2 GAC	10
	2.4.3 Pelleted activated carbon	10
	2.4.4 Impregnated carbon	10
	2.4.5 Polymers coated carbon	10
2.5	Characteristic of activated carbon	11
2.6	Surface properties for adsorption	11
2.7	Description of production process	12
2.8	Adsorption process	13
2.9	Liquefied Petroleum Gas (LPG)	15
2.10	Review from current research	18
2.11	Preparation of carbon adsorbent	18

CHAPTER 3 METHODOLOGY

3.0	Introduction	20
3.1	Collecting information	21
3.2	Design	21
	3.2.1 Design concept	21
	3.2.2 Part of design	23
3.3	Design and fabrication	24
3.4	Selecting material	27
3.5	Testing	27
	3.5.1 Experimental rig for preparation carbon	28
	adsorbent	
	3.52 Preparation of carbon adsorbent using	28
	Conventional method	

	3.5.3 Preparation of carbon adsorbent using the	32
	Compression method	
	3.5.4 Preparation of testing the performance of	35
	Carbon adsorbent in LPG tank	
3.6	Problem analysis and solution	36

CHAPTER 4 RESULTS AND DATA ANALYSIS

	4.1	Experiment 1: Conventional Method	37
	4.2	Experiment 2: Compression Method	38
	4.3	Experiment 3: Testing Performance	40
CHAPTER 5	DIS	CUSSION	44
CHAPTER 6	CON	NCLUSION AND SUGGESTIONS	46
	REF	FERENCES	49
	APP	ENDICES	52

LIST OF TABLES

NO.	TITLES	PAGES
2.1	The properties of LPG	17
4.1	Weight of samples at 700°C after pyrolisis process	37
4.2	Weight and force of sample at different temperature	38
4.3	Weight of gas adsorbed for various sample due to different temperature	42

LIST OF FIGURES

NO.	TITLES	PAGES
1.1	PSM Gantt chart.	3
2.1	Activated carbon	6
2.2	Close up of sample activated carbon	6
2.3	Carbonized coconut	8
2.4	Activated coconut	8
2.5	Production activated carbon chart	8
2.6	PAC	9
2.7	GAC	10
2.8	Close up of carbon surface and pores magnification increases from left to right	12
2.9	LPG cylinder tank	15
3.1	Methodology chart	20
3.2	Current design for conventional method	22
3.3	New design for compression method	23

3.4	Concept design of top part	23
3.5	Concept design of reactor	24
3.6	Design for reaction body part 1 in 2D view	25
3.7	Design for reaction body part 2 in 2D view	25
3.8	Design of top part in 2D view	26
3.9	Design of plate sieve in 2D view	26
3.10	Sieve is located below the top part surface	27
3.11	Sieve is located inside the reactor	27
3.12	Sieve of size 250 – 425 µm	28
3.13	Sample of granular	28
3.14	Sample of particles	29
3.15	Sample of powder	29
3.16	Current design of reactor	30
3.17	Suction blower	30

Nitrogen and carbon dioxide gas tank	30
Control meter of gas flow rate	31
Process using compression method Sample is being weighed	32 32
New design of reactor	33
Hydraulic jack	33
Top plate	33

3.25	Process using compression method	34
3.26	Top view of the process by using compression method	34
3.27	Location of force gauge	35
3.28	Cylindrical test bed on the digital balance	36
3.29	LPG's tank that used in adsorption test	36
4.1	Graph of weight changes for samples using conventional method	38
4.2(a)	Graph of force against temperature in compression method	39

3.18

3.19

3.20

3.21

3.22

3.23

3.24

4.2(b)	Graph of weight against temperature in compression method	40
4.2(c)	Graph of weight changes at different temperature in compression method	41
4.3(a)	Graph of weight for gas adsorbed against different temperature	43
4.3(b)	Graph of weight change for all samples	44
5.1	Flaming occurred at temperature 500°C by using	46

compression method

LIST OF APPENDICES

NO.	TITLE	PAGES
А	LPG	53
В	Process for producing activated carbon (U.S. Patent)	55

CHAPTER 1

INTRODUCTION

Carbon adsorbent is also known as activated carbon. The active carbon is a material with an exceptionally high surface area. One gram of activated carbon has a surface area of approximately 500 m^2 , typically determined by nitrogen gas adsorption, and includes a large amount of microporosity.

The active carbon can be produced in different process from a variety of carbonaceous source materials such as coconut shells, coal, walnut shell, palm date pits, nutshell and oil palm shell. The two different processes include physical reactivation and chemical activation.

Normally, the activated carbon is used in gas purification, metal extraction, water purification, medicine, sewage treatment, air filters in gas masks and filter masks, filters in compressed air and many other applications.

1.1 Background research

In order to reduce air pollution, many countries had used LPG as an alternative way replacing natural gas and petrol as a fuel in their vehicles. The use of LPG is more economic because it is simply to prepare and easy to use as the LPG is not using the high pressure tank compared to natural gas.

Many researches are being done to improve the use of LPG in the automotive industry. One of the current researches is to develop LPG and methane gas storage as the alternative fuels for vehicles based upon the carbon adsorbent. Carbon adsorbent or active carbon is used as a gas storage media for LPG is an alternative way to overcome the disadvantages of pressurized vessel such as high pressure flammable gas content, dimension of gas tank and other dangerous aspects.

The current research of using the carbon adsorbent in LPG is successfully worked as the carbon adsorbent has a potential to adsorb the gas based on its characteristics. For this project, the objective is to develop and prepare a carbon adsorbent that can be used in LPG tank for increasing the storage capacity. In terms of that, different techniques and preparation procedures are being used to investigate the effects on the pore structures development on carbon because it is important in gas adsorption and desorption processes.

1.2 PSM flow chart

Figure 1.1 PSM flow chart

1.3 Problem Analysis

Liquefied petroleum gas (LPG) is used to replace the petrol because of the fuel cost is rapidly increase nowadays. Using LPG as a fuel for vehicles give more advantages than the others fuel. This is because the LPG is more economic and is not using high pressure tank.

In application for the vehicles, a small tank for LPG storage with high capacity is needed. In order to increase the storage capacity in small LPG tank, carbon adsorbent is used. Carbon adsorbent has a potential to adsorb LPG due to its characteristics. Carbon adsorbent was prepared by the process of carbonization and activation on previous research.

Even the process is capable to produce carbon adsorbent in high adsorption capacity; the process is occurs in high temperature and using N_2 and CO_2 gas. Heating at high temperature take a long time to get the product and the use of N_2 and CO_2 gas have to be control to obtain the specific flow rate and CO_2 is costly.

1.4 Scope

Objective

• To develop and prepare a carbon adsorbent that can be used in LPG tank for increasing the storage capacity.

Scopes

- Design and develop an experimental rig for preparing carbon adsorbent
- Design and develop an experimental rig for testing carbon adsorbent in LPG tank
- Determine the performance of a carbon adsorbent in LPG tank

CHAPTER 2

LITERATURE REVIEW

2.1 Activated carbon

Carbon adsorbent is also known as activated carbon. The activated carbon is a material with an exceptionally high surface area. One gram of activated carbon has a surface area of approximately 500 m^2 , typically determined by nitrogen gas adsorption, and includes a large amount of microporosity.

Figure 2.1 Activated carbon

Figure 2.2 Close up of sample activated carbon (Source: <u>www.wikipedia.com</u>)

2.2 Source material

The activated carbon can be produced in different process from a variety of carbonaceous source materials. The potential natural precursors for carbon adsorbents include coconut shells, coal, walnut shell, palm date pits, nutshell and oil palm shell.

2.3 Production

There are two different processes in producing the activated carbon. It can be produced using one of the two following processes:

- 1. **Physical reactivation**: The precursor is developed into activated carbons using gases. This is generally done by using one or combining the following processes:
 - Carbonization: material with carbon content is pyrolysed at temperatures in the range 600-900°C, in absence of air (usually in inert atmosphere with gases like nitrogen)
 - Activation/oxidation: raw material or carbonized material is exposed to oxidizing atmospheres (carbon dioxide, oxygen, or steam) at temperature above 250°C, usually in the temperature range 600-1200°C.
- 2. Chemical activation: Impregnation with chemicals such as acids like phosphoric acid or bases like potassium hydroxide, sodium hydroxide or salts like zinc chloride, followed by carbonization at temperatures in the range 450-900°C. It is believed that the carbonization / activation step proceeds simultaneously with the chemical activation. This technique can be problematic in some cases because, for example, zinc trace residues may remain in the end product. However, chemical activation is preferred over physical activation owing to the lower temperatures and shorter time needed for activating material.