155103.2.N72 2008 ref.

PERFORMANCE ANALYSIS OF MIMO-CDMA SYSTEM

NOOR SHAKIRAH BINTI BAHARUM

This report is submitted in partial fulfillment of the requirements for the award of Bachelor Electronic Engineering (Telecommunication Electronics) With Honours

Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka

May 2008

UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek

PERFORMANCE ANALYSIS OF MIMO-CDMA SYSTEM

Sesi

Pengajian

2007/2008

Saya NOOR SHAKIRAH BINTI BAHARUM

(HURUF BESAR)

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syaratsyarat kegunaan seperti berikut:

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.

Sila tandakan ($\sqrt{}$):

	SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)	
	TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)	
\checkmark	TIDAK TERHAD		

Disahkan oleh:

Pensyarah Fakulti Kej Elektrenik dan Kej Kemputer (FKEKK),

Universiti Teknikal Malaysia Melaka (UTeM), Karung Berkunci 1266, Ayer Kereh, 75459 Melaka

(TANDÁTANGAN PENULIS)

Alamat Tetap: K-2-1 KEDIAMAN ANGGOTA

PERKHIDMATAN AWAM,

NO. 1 JALAN DUTAMAS 3, 50480 KUALA LUMPUR

Tarikh: 09 MEI 2008

Tarikh: 09 MEI 2008

"I hereby declare that this report is the result of my own work except for quotes as cited in the references."

Signature

Author

: NOOR SHAKIRAH BINTI BAHARUM

Date

: 09 MAY 2008

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of the scope for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honours."

Signature

Supervisor's Name

: MR ABD SHUKUR BIN JA'AFAR

Date

: 09 MAY 2008

Dedicated, in thankful appreciation for support, encouragement and understandings to my beloved father, mother and my siblings.

ACKNOWLEDGMENT

I would like to express my heartily gratitude to my supervisor, Encik Abd Shukur bin Ja'afar for the guidance and enthusiasm given throughout the progress of this project. My appreciation also goes to my family and my friends who has been so tolerant and supports me all these years. Thanks for their encouragement, love and emotional supports that they had given to me.

ABSTRACT

Today, communication system requires high capacity and faster data transmission with minimum error and losses. Wireless communication using multiple input multiple output (MIMO) systems enables increased spectral efficiency for a given total transmit power and high reliability. This project is to analyze the performance of MIMO-CDMA with comparison to conventional of Code Division Multiple Access (CDMA) system. The performance is often measured as the average bit rate (bit/s) the wireless link can provide or as the average bit error rate (BER). In this project, simulation are done to design the simulation model which is conventional CDMA, MIMO-CDMA with two-transmit two-receive (2Tx2Rx) and MIMO-CDMA with four-transmit four-receive (4Tx4Rx). Then, the comparison between conventional CDMA system and MIMO-CDMA system is made to investigate the system performance. All simulation models are done using the MATLAB software. The result shows that MIMO-CDMA technique gives better performance than conventional CDMA system in term of bit error rate (BER) and also capacity performance. From this analysis also, the performance can improve better when the number of antenna is increase.

ABSTRAK

sistem perhubungan memerlukan kapasiti tinggi dan kepantasan penghantaran data dengan kehilangan dan kesilapan yang minima. Komunikasi tanpa wayar menggunakan sistem MIMO membolehkan peningkatan kecekapan spectra diberi jumlah penghantaran kuasa dan keadaan yang boleh dipercayai yang tinggi. Projek ini mengkaji persembahan MIMO-CDMA dengan perbandingan sistem biasa CDMA. Persembahan ini biasanya diukur sebagai purata kadar bit (bit/s) oleh hubungan tanpa wayar yang boleh disediakan atau sebagai purata kadar kesilapan bit (BER). Dalam projek ini, simulasi dibuat untuk merekabentuk model simulasi iaitu sistem biasa CDMA, MIMO-CDMA dengan 2-hantar 2-terima (2Tx2Rx) dan MIMO-CDMA dengan 4-hantar dan 4-terima (4Tx4Rx). Kemudian, perbandingan di antara sistem biasa CDMA dengan sistem MIMO-CDMA dilakukan untuk menyiasat persembahan sistem itu. Semua model simulasi dilakukan dengan menggunakan persisian MATLAB. Keputusan menunjukkan teknik MIMO-CDMA memberikan persembahan yang lebih baik berbanding dengan sistem biasa CDMA dalam terma kadar kesilapan bit (BER) dan juga persembahan kapasiti. Daripada analisis ini juga, persembahan boleh ditingkatkan dengan lebih baik apabila bilangan antena meningkat.

CONTENTS

CHAPTER	TITLE		PAGE	
	TIT	TLE OF PROJECT	i	
	RE	PORT STATUS VERIFICATION FORM	ii	
	DE	CLARATION	iii	
	SUI	PERVISOR'S DECLARATION	iv	
	DE	DICATION	v	
	AC:	KNOWLEDGEMENT	vi	
	ABS	STRACT	vii	
	ABS	ABSTRAK		
	CO	NTENTS	ix	
	LIS	T OF TABLES	xii	
	LIS	T OF FIGURES	xiii	
	LIS	T OF SIMBOLS/ABBREVIATION	xvi	
	LIS	T OF APPENDICES	xvii	
I	INT	RODUCTION	1	
	1.1	Introduction of Project	1	
	1.2	Objective of Project	2	
	1.3	Problem Statement	2	
	1.4	Scope of Work	2	
	1.5	Methodology	3	
	1.6	Report Structure	3	

II	LI	ΓERATURE REVIEW	5
	2.1	Introduction	5
	2.2	Multiple Access Technique	5
		2.2.1 Frequency Division Multiple Access	6
		2.2.2 Time Division Multiple Access	7
		2.2.3 Code Division Multiple Access	8
		2.2.4 Advantages of CDMA	8
	2.3	Spread Spectrum	9
		2.3.1 Spread Spectrum Principle	9
		2.3.2 Direct Sequence Spread Spectrum	10
		2.3.3 The Concept of Spread Spectrum	14
	2.4	Modulation	14
		2.4.1 Phase Shift Keying	15
	2.5	Spreading	16
	2.6	Diversity techniques	17
		2.6.1 Frequency Diversity	17
		2.6.2 Time Diversity	17
		2.6.3 Space/Spatial Diversity	17
		2.6.3.1 Selective Diversity	18
		2.6.3.2 Frequency Diversity	18
		2.6.3.3 Maximal Ratio Combing	18
		2.6.3.4 Equal Gain Diversity	19
	2.7	MIMO	19
		2.7.1 Advantages of MIMO	19
		2.7.2 Capacity of MIMO	20
	2.8	AWGN	21
	2.9	MATLAB 7.1	21
		2.9.1 Simulink	22
		2.9.2 Communications Toolbox	23

III	ME	THODOLOGY	24
	3.1	Simulation Model	24
		3.1.1 Conventional CDMA	24
	3.2	Input data	27
	3.3	Modulator and Demodulator	29
	3.4	Spreader and Despreader	30
	3.5	Walsh Code Generator	32
	3.6	AWGN Channel	34
	3.7	BER Measurement	35
	3.8	Capacity measurement	38
IV	RES	SULTS AND DISCUSSION	40
	4.1	Analysis of Conventional CDMA system	40
	4.2	Analysis of MIMO-CDMA system	44
		4.2.1 2 Transmit and 2 Receive antenna	44
		4.2.2 4 Transmit and 4Receive antenna	49
	4.3	Bit Error Rate performance	57
	4.4	Capacity performance	58
V	CO	NCLUSION AND RECOMMENDATION	60
	5.1	Conclusion	60
	5.2	Recommendation/Future Work	61
	REI	FERENCES	62
	API	PENDICES	63-74

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Basic specification of CDMA	25
3.2	Simulation values for capacity	39
4.1	Capacity Values for Simulation Model	58

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Flow diagram of methodology	3
2.1	Channel allocation in FDMA scheme	6
2.2	Channel allocation in TDMA scheme	7
2.3	Channel allocation in CDMA scheme	8
2.4	Example of direct sequence spread spectrum	11
2.5	Direct Sequence Spread Spectrum Using BPSK	12
2.6	Direct Sequence Spread Spectrum at Transmitter	13
2.7	Direct Sequence Spread Spectrum at Receiver	13
2.8	General Model for Spread Spectrum Digital Communication	14
	System	
2.9	Output phase-versus time relationship for a BPSK	15
2.10	Spreaded data	16
3.1	Simulation model of conventional CDMA	26
3.2	Simulation model MIMO-CDMA 2Tx2Rx antenna	26
3.3	Simulation model of MIMO-CDMA 4Tx4Rx antenna	27
3.4	Parameter setting for Random Integer Generator block	28
3.5	Parameter setting for MPSK Modulator Baseband block	29
3.6	Parameter setting for MPSK Demodulator Baseband block	30
3.7	Spreading process at the transmitter	31
3.8	Spreading process at the receiver	31
3.9	Block diagram of spreader	32
3.10	Parameter setting for Walsh Code block	33
3.11	Parameters setting for AWGN Channel block	34

3.12	BER Measurement block diagram	35
3.13	Parameter setting for Bit Error Rate Analysis Tool block	36
3.14	Parameter setting for Error Rate Calculation block	37
4.1	Input signal	41
4.2	Modulated signal	41
4.3	Spreaded signal	42
4.4	Transmitted signal with AWGN channel	42
4.5	Despreaded signal	43
4.6	Demodulated signal	43
4.7	Output signal	44
4.8	Input signal	45
4.9	Modulated signal at antenna 1	45
4.10	Modulated signal at antenna 2	46
4.11	Spreaded signal at antenna 1	46
4.12	Spreaded signal at antenna 2	46
4.13	Transmitted signal with AWGN at antenna 1	47
4.14	Transmitted signal with AWGN at antenna 2	47
4.15	Despreaded signal at antenna 1	47
4.16	Despreaded signal at antenna 2	48
4.17	Demodulated signal at antenna 1	48
4.18	Demodulated signal at antenna 2	48
4.19	Output signal	49
4.20	Input signal	50
4.21	Modulated signal at antenna 1	50
4.22	Modulated signal at antenna 2	50
4.23	Modulated signal at antenna 3	51
4.24	Modulated signal at antenna 4	51
4.25	Spreaded signal at antenna 1	51
4.26	Spreaded signal at antenna 2	52
4.27	Spreaded signal at antenna 3	52
4.28	Spreaded signal at antenna 4	52
4.29	Transmitted signal with AWGN at antenna 1	53
4.30	Transmitted signal with AWGN at antenna 2	53

4.31	Transmitted signal with AWGN at antenna 3	53
4.32	Transmitted signal with AWGN at antenna 4	54
4.33	Despreaded signal at antenna 1	54
4.34	Despreaded signal at antenna 2	54
4.35	Despreaded signal at antenna 3	55
4.36	Despreaded signal at antenna 4	55
4.37	Demodulated signal at antenna 1	55
4.38	Demodulated signal at antenna 2	56
4.39	Demodulated signal at antenna 3	56
4.40	Demodulated signal at antenna 4	56
4.41	Output signal	57
4.42	BER performance of CDMA model	57
4.43	SNR versus Capacity	59

LIST OF SYMBOLS/ABBREVIATIONS

AWGN Additive White Gaussian noise

BER Bit Error Rate

Binary Phase Shift Keying **BPSK**

CDMA Code Division Multiple Access

DSSS Direct Sequence Spread Spectrum

FDMA Frequency Division Multiple Access

FHSS Frequency Hopping Spread Spectrum

MIMO Multiple Input Multiple Output

MPSK M-array Phase Shift Keying

PSK Phase Shift Keying

QPSK Quadrate Phase Shift Keying

SISO Single Input Single Output

SNR Signal-to-Noise Ratio

TDMA Time Division Multiple Access

LIST OF APPENDICES

NO	TITLE	PAGE
A	Simulink Library Browser	63
В	Random integer generator	64
C	M-PSK Modulator Baseband	65
D	M-PSK Demodulator Baseband	66
E	Walsh Code Generator	67
F	AWGN Channel	68
G	Complex to Real-Imag	69
H	Real-Imag to Complex	70
I	Mux	71
J	Demux	72
K	Error Rate Calculation	73
L	Scope, Floating Scope, Signal Viewer Scope	74

CHAPTER I

INTRODUCTION

In wireless communication system, Multiple Input Multiple Output (MIMO) refers to links for which the transmitting end as well as the receiving end is equipped with multiple antenna elements. The transmit antennas on one end and the received antenna on the other end are jointly 'combined' in such a way that can the quality (bit error rate) or the rate (Bit/sec) of the communication is improved. This project is importance because a new technique can be produced which is MIMO-CDMA system that can improved the performance of wireless links.

1.1 Introduction of Project

This project analyzes the performance of MIMO-CDMA with comparison to conventional of Code Division Multiple Access (CDMA) system. MIMO refers to wireless link with multiple antennas at the transmitter and receiver side. Given multiple antenna, the spatial dimension can be exploited to improve the performance of the wireless link. The performance is often measured as the average bit rate (bit/s) the wireless link can provide or as the average bit error rate (BER).

1.2 Objective of Project

The objectives of the project are to develop the simulation model for conventional CDMA and MIMO-CDMA by using MATLAB 7.1 software with Simulink and Communications Blockset. Besides that, the project also analyzes the performance of conventional Code Division Multiple Access (CDMA) system and MIMO-CDMA system. Finally, this project compares the performance of MIMO-CDMA system with conventional CDMA system.

1.3 Problem Statement

Today, communication system requires high capacity and faster data transmission with minimum error and losses. The capacity will become congested in future. Therefore, the system needs new technique so that can accommodate this insufficiency. MIMO is one of the techniques that can provide promising approaches.

1.4 Scope of Work

The scope of this project are to analyze the performance of conventional CDMA and MIMO-CDMA system measured in average bit error rate (BER) and capacity. The simulations models are simulated with different number of antenna which are two transmit-two receive (2Tx2Rx) and four transmit-four receiver (4Tx4Rx). The simulation model will be done by using MATLAB software. The comparison between conventional CDMA system and MIMO-CDMA are done. For capacity computation, Shannon theorem is used to calculate the performance of MIMO-CDMA channel capacity.

1.5 Methodology

In this project, simulation are done to design the simulation model of this project which is conventional CDMA, MIMO-CDMA with two-transmit two receive (2Tx2Rx) and MIMO-CDMA with four-transmit four receive (4Tx4Rx). Then, the comparison between conventional CDMA system and MIMO-CDMA system is made to investigate the system performance. Figure 1.1 shows the flow diagram for the methodology implemented in this project.

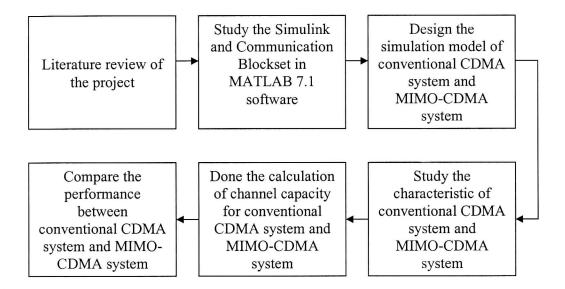


Figure 1.1: Flow diagram for methodology

1.6 Report Structure

This report consists of five chapters such as introduction, literature review, methodology, results and discussion, and also conclusion and recommendation.

Chapter I discuss about the overview of the project. It explains about the introduction of the project, objective, problem statement, scope of work and overview of report structure.

Chapter II explains the theory related to this project. The concept of multiple access technique and diversity technique which are consider and the theories of MIMO are also discussed in this chapter. Besides that, the advantages of proposed technique are also will be discuss.

Chapter III describes the methodology used to execute and simulate the conventional CDMA and MIMO-CDMA. This chapter discusses about the simulation model, modulation and demodulation that had been used, spreader and despreader, Walsh code and Additive White Gaussian Noise channel.

Chapter IV shows the results and analysis obtained through simulation. The results show the analysis of CDMA system and MIMO-CDMA system. From the results, it shows that the MIMO-CDMA system gives better performance compared to the conventional CDMA system. The advantage of using antenna array represents that the capacity increased by using multiple input multiple output (MIMO) technique.

The last chapter that is Chapter V gives the conclusion and recommendation for future works in this project. It can be conclude that the MIMO gives better performance by increasing the number of antenna at transmitter and receiver.

CHAPTER II

LITERATURE REVIEW

In this chapter, the background study of this project is discussed in order to implement this project. It is also elaborates about multiple access techniques and diversity technique that are the essentials in implementing this project.

2.1 Introduction

This chapter discusses the theory related to this project. The concept of code division multiple access, diversity techniques, spread spectrum, modulation, MIMO (Multiple Input Multiple Output) and so on.

2.2 Multiple Access Techniques

Multiple access schemes are used to allow many mobile users to share simultaneously a common bandwidth [8]. There are three main types of multiple access system, each of which has its own way of sharing the bandwidth such as Frequency Division Multiple access (FDMA), Time Division Multiple Access (TDMA) and Code Division Multiple Access (CDMA). FDMA and TDMA are narrowband technologies while CDMA is wideband.

2.2.1 Frequency Division Multiple Access (FDMA)

Frequency division multiple access assigns individual channels (frequency bands) to individual users. When a frequency bands is assigned to user, no other user of the same cell or in the neighboring cell can use it at the same time. The bandwidth of FDMA channels are relatively narrow which is around 25-30kHz as each channel supports only one cell call per carrier. Meaning that, FDMA is usually applied in narrowband systems. Figure 2.1 shows channel allocation in FDMA schemes.

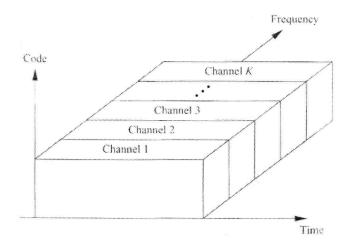


Figure 2.1: Channel allocation in FDMA schemes.[8]

Transmission is continuous over time, which can complicate overhead functions such as channel estimation because these functions must be performed simultaneously and in the same bandwidth as data transmission. FDMA also requires frequency-agile radios that can tune to the different carriers associated with the different channels. It is difficult to assign multiple channels to the same user under FDMA, since this requires the radios to simultaneously demodulate signals received over multiple frequency channels. Still, FDMA is the most common multiple access option for analog communications systems, where transmission is continuous, and serves as the basis for the AMPS and TACS analog cellular phone standards.

2.2.2 Time Division Multiple Access (TDMA)

Time division multiple access shares a single carrier frequency with several users, where each user makes use of non overlapping slots. In TDMA, the information from each user is conveyed in time intervals called time slots. A new user connecting to the system must be assigned a time slot on a different frequency when all the available time slots are used in given frequency. Figure 2.2 shows that the channel allocation in TDMA schemes.

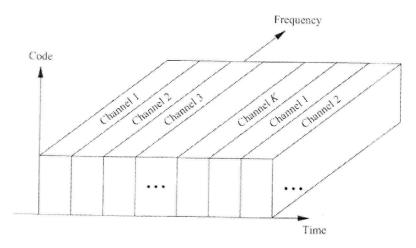


Figure 2.2: Channel allocation in TDMA scheme.[8]

A mobile station can exchange system control signals with the base station without interruption of speech or data transmission. This facilitates the introduction of new network and user services. The mobile station also can check the signal level from nearby cells by momentarily switching to a new time slot and radio channel. This enables the mobile station to assist with handover operations and thereby improve the continuity of service in response to motion or signal fading conditions. The availability of signal strength information at both the base and mobile stations, together with suitable algorithms in the station controllers, allow further spectrum efficiency through the use of dynamic channel assignment and power control.