

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PRODUCTIVITY IMPROVEMENT ANALYSIS AT MUSHROOM INDUSTRY USING TIME STUDY METHOD

Report submitted in accordance with the partial requirement of the Universiti Teknikal

Malaysia Melaka for the Bachelor of Manufacturing Engineering

(Manufacturing Management)

 $\mathbf{B}\mathbf{y}$

HAZI HAZNIDA BINTI USOLLUDIN B050810155

FACULTY OF MANUFACTURING ENGINEERING 2011

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Productivity Improvement at Mushroom Industry Using Time Study

Method

SESI PENGAJIAN: 2010/11 Semester 2

Saya HAZI HAZNIDA BINTI USOLLUDIN

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
Alamat Tetap:	PENYELIA PSM
NO. 3/411 Kampung Baru,	
Beserah, 26100 Kuantan,	
Pahang Darul Makmur.	
Tarikh:	Tarikh:

^{**} Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Productivity Improvement at Mushroom Industry Using Time Study Method" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	
Date	:	

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the Degree in Bachelor of Manufacturing Engineering (Manufacturing Management). The members of the supervisory committee are as follow:

Principal Supervisor

NOR AKRAMIN BIN MOHAMAD Pensyarah

Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

Co-Supervisor

MOHD SOUFHWEE BIN ABD. RAHMAN

Jurutera Pengajar Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

ABSTRAK

Value Stream Mapping dianggap sebagai alat penting dalam pelaksanaan pembuatan lean. Dengan ini, masalah (waste) dalam sistem dikenalpasti dan lean dapat diimplementasi dengan jayanya. Value Stream Mapping (VSM) merupakan suatu kaedah manual menggunakan kertas dan pensel di mana kaedah ini menggambarkan imej statik daripada proses yang membolehkan pengguna untuk mendapat gambaran value added dan juga non-value added di dalam value stream. Walaupun kaedah ini sangat berkesan, namun ianya rumit dan juga memakan masa. Value Stream Mapping (VSM) tradisional ini tidak memiliki kemampuan untuk menerap perubahan dengan cepat yang biasanya berlaku di bahagian pemprosesan semikonductor di mana pada kebiasaanya merupakan suatu proses yang berterusan. Permodelan dan simulasi merupakan salah satu pendekatan yang baru dan boleh diamalkan dalam bidang Kejuruteraan Industri dan berupaya untuk menambah aspek dinamik dalam Value Stream Mapping (VSM). Di samping itu, permodelan dan simulasi juga mampu meningkatkan masa analisis pada kajian VSM. Kajian ini memberi fokus kepada proses membina model simulasi VSM di bahagian proses semikonduktor yang telah dipilih. Kaedah yang dipilih untuk kajian ini adalah dengan menggunakan langkahlangkah permodelan simulasi yang lengkap untuk memberi panduan dalam pembinaan model simulasi Value Stream Mapping (VSM). Model simulasi Value Stream Mapping untuk proses bagi produk SMA direka dan setelah model ini disahkan, ianya boleh digunakan untuk analisa yang lebih mendalam. Keputusan kajian ini merangkumi senario simulasi yang berbeza di mana penekanan kepada waste elimination di bahagian pemprosesan dan satu cadangan Future Value Stream Mapping juga disyorkan dalam kajian ini. Penelitian ini sangat berguna untuk Syarikat ABC kerana model simulasi Value Stream Mapping merupakan alat yang sangat beguna di mana ianya berupaya menunjukkan perubahan dalam sistem berdasarkan pada input untuk model dalam masa yang singkat.

ABSTRACT

Value Stream Mapping is regarded as an important tool in the implementation of lean manufacturing. It identifies the waste in the system, paving the way for a successful lean implementation. A value stream mapping (VSM) is a paper and pencil tool that depicts a static picture of a process that allows the user to see where value is added into the value stream. Although, this method is very effective but it can be very complicated, tedious and time consuming. The traditional value stream mapping (VSM) does not have the capability to response to rapid changes which occurs in the semiconductor assembly line where the work processes change continuously. Simulation modeling is one of new approaches that Industrial Engineering (IE) practitioners are using as a powerful tool which add the dynamic aspects to the value stream mapping (VSM) and able improve the analysis time of the VSM study. The study focuses on the development of a VSM simulation model of a selected semiconductor manufacturing assembly line. The methodology adapted for the study is using the simulation modeling systematic steps, which comprised of complete steps to guide the model building of simulation based value stream mapping. The simulation model for Current State Value Stream Mapping for product SMA is developed, the model is verified and validate before it can be used for further analysis. The result of this study includes simulation scenarios of waste elimination and proposed final Future State Value Stream Mapping. The study is indeed very useful to the company because the simulation model of Value Stream Mapping is very powerful tool, where it can demonstrate the changes in the behavior of the system adhering to the inputs for the model.

DEDICATION

This study is dedicated to my beloved Mother and Father who have supported me all the way since the beginning of my studies;

Kasee a/l P.Chattapan Mallika a/p Marimuthu

Also, this study is dedicated to my brothers who have been a great source of motivation and inspiration.

Prabakaran a/l Kasee
Sundramoorth a/l Kasee
All of the family members and relatives

&

En. Nor Akramin Bin Mohamad
Project Supervisor

Pn.Rohana Bt. Abdullah
Project Co Supervisor

Thank you for the encouragement, support and motivation given in completion of Final Year Project

Salini a/p Kasee.

ACKNOWLEDGEMENT

First and foremost, praise to God for this opportunity and the blessing shown upon me in guiding me through the difficult times on completion of this Final Year Project. I would like to take this opportunity to acknowledge the advices and guidance of Mr. Nor Akramin bin Mohamad and Madam Rohana bt Abdullah as my project supervisor and co-supervisor. I could not have survived the past period involved in completing this project without the guidance of both of my supervisors.

Furthermore, I would also like to take this opportunity to extend my heartiest gratitude to the following individuals in their supports;

- ❖ PM. Dr. Chong Kuan Eng
- Ms. Gan Sin Yi
- ❖ ABC Company Sdn Bhd

Special thanks and appreciation also dedicated to my course mates for their support and guidance in completing the Final Year Project.

Thank You

TABLE OF CONTENT

Abst	trak	i
Abst	tract	ii
Dedi	ication	iii
Ackn	nowledgement	iv
Table	le of Content	v
List o	of Figures	ix
List o	of Tables	xi
List (of Abbreviations	xii
1.0	Introduction	1
1.1	Background	1
1.2	Problem Statement	3
1.3	Objectives of Project	4
1.4	Project Scope	4
2.0	Literature Review	5
2.1	Introduction	5
2.2	Philosophy of Time Study	6
2.3	Objectives of Time Study	8
	2.3.1 The Important and Uses of Time Study	9
2.4	Time Study Techniques	9
	2.4.1 Time Study in Non-Manufacturing Area	11
2.5	Description of Time Study	11
2.6	Time Study Equipment	14
2.7	Making The Time Study	15
2.8	Stopwatch Time Study	16
2.9	Rating	17
	2.9.1 Method of Rating	18

	2.9.2	Application of Rating	21
2.10	Allow	ances	22
	2.10.1	Standard Time	24
	2.10.2	Allowances Applications	25
3.0	Metho	odology	26
3.1	Introd	uction	26
3.2	Metho	dology Flow Chart	26
3.3	Phase	of Methodology	28
	3.3.1	Phase I	28
	3.3.2	Method of Phase I	28
	3.3.3	Phase II	29
	3.3.4	Method of Phase II	29
	3.3.5	Phase III	30
	3.3.6	Method of Phase III	30
3.4	Time	Study Methodology	31
	3.4.1	Analyze Mushroom's Production Process Flow and Identify	
		Problems	31
	3.4.2	Implement Time Study Method to Overcome Problems	
		Identified	32
	3.4.3	Suggest Alternative Solutions	32
4.0	Data (Collection	34
4.1	Proces	ss Flow Chart	35
	4.1.1	Mushroom Production Line	35
	4.1.2	Packaging Process	36
4.2	Data (Collection	37
	4.2.1	Time Study Data Collected	37
		4.2.1.1 Time of Process Involved in Packing	37
		4.2.1.2 Required Time for Productivity Analysis	37
		4.2.1.3 Weights and Sizes of Mushroom	38

		4.2.1.4 Statistical Data	39
	4.2.2	Data Explanation	40
4.3	Visua	l Management	40
	4.3.1	Philosophy of Visual Management	40
	4.3.2	Purposed of Visual Management	40
	4.3.3	Benefits of Visual Management	41
	4.3.4	Andon Light System	41
		4.3.4.1 Definition of Andon System	41
		4.3.4.2 Goals of Andon	42
4.4	Gradi	ng System	43
	4.4.1	About the System	43
	4.4.2	Benefits of Grading System	43
4.5	Weigh	hing Indicator Machine	44
	4.5.1	Existing Design	44
	4.5.2	Advantages of Existing Design	45
	4.5.3	Disadvantages of Existing Design	45
5.0	Resul	It and Discussion	46
5.1	Resul	t and Recommendation of Project	46
	5.1.1	Visual Management System	48
	5.1.2	Grading System	48
		5.1.2.1 Length Guide for Mushroom Size Measuring	49
		5.1.2.2 Grading Type by Size and Weight	49
		5.1.2.3 Mushroom Matrix Grading Schedule	49
	5.1.3	LED Weighing Indicator Machine (Improvement)	50
		5.1.3.1 Improvement Design	50
		5.1.3.2 Design Selected	51
		5.1.3.3 Description of Selected Design	51
		5.1.3.4 Pictures of Design Product	52
		5.1.3.5 System Involved	52
		5 1 3 5 1 Design Specification	52

		5.1.3.5.2	Circuit Used	53
		5.1.3.5.3	Connecter System RS-232	54
		5.1.3.5.4	Advantages of RS-232	56
5.2	Packir	ng Process After Improven	nent implementation	56
	5.2.1	Summary of Time Involv	ved	58
		5.2.1.1 Total Time for W	eight Measuring Process	58
		5.2.1.2 Normal and Stand	dard Time Before and After	
		Improvement		59
6.0	Concl	usion and Recommendat	tion	60
6.1	Concl	usion		60
6.2	Recon	nmendation		61
7.0	Refer	ences		62
8.0	Appe	ndices		63
8.1	Apper	ndices A		63
	8.1.1	Calculation Before Impre	ovement	63
	8.1.2	Calculation After Improv	vement	66
8.2	Apper	ndices B		71
	8.2.1	Industry Detail		71
	8.2.2	About Grey Oyster Mush	aroom	71
	8.2.3	Pictures at Industry	•••••	72
8.3	Apper	ndices C		74
	8.3.1	Design Ideas		74
	8.3.2	Selected Design	•••••	77
8.4	Apper	ndices D		78
	8.4.1	LED Weighing Indicator	Machine	78
8.5	Apper	ndices E		79
	8.5.1	Gantt Chart PSM I		79
	8.5.2	Gantt Chart PSM II		80

LIST OF FIGURE

Figure 2.1	Breakdown of Standard Time	24
Figure 3.1	Methodology Flow Chart	27
Figure 3.2	Time Study Methodology	31
Figure 4.1	Mushroom Production Flow Process	35
Figure 4.2	Packing Flow Process	36
Figure 4.3	Normal Distribution Graph for Mushroom's Sizes	39
Figure 4.4	Normal Distribution Graph for Mushroom's Weight	39
Figure 4.5	Andon Light	42
Figure 4.6	Kitchen Scale	44
Figure 4.7	Digital Weighing Indicator Machine	44
Figure 4.8	Body Mass Indicator Machine	45
Figure 5.1	Length Guide for Mushroom	48
Figure 5.2	Selected Design of Improvement Product.	51
Figure 5.3	LED Weighing Indicator Machine	52
Figure 5.4	LED Weighing Indicator Machine	52
Figure 5.5	LED Andon Light System.	52
Figure 5.6	LED System Block Diagram Circuit	53
Figure 8.1	Grey Oyster Mushroom	72
Figure 8.2	Mushroom Ready for Packing	73
Figure 8.3	Regular Digital Weighing Machine	73
Figure 8.4	Measuring and Packing Process	73
Figure 8.5	Additional Based Concept	74
Figure 8.6	Andon Light System Concept	75
Figure 8.7	Fiber Optic Based Concept	76
Figure 8.8	Andon Light System Concept	77
Figure 8.9	LED Weighing Indicator Machine	78
Figure 8.10	LED Weighing Indicator Machine	78
Figure 8.11	LED Andon Light System	78

Figure 8.12	PSM I Gantt Chart.	79
Figure 8.13	PSM II Gantt Chart	8(

LIST OF TABLE

Table 2.1	Time Study Techniques by Source	10
Table 4.1	Time of Process Involved in Packing.	37
Table 4.2	Time Required to be Calculated	37
Table 4.3	Weight and Size of Mushroom Measured	38
Table 4.4	Classification of Mushroom	40
Table 5.1	Summary of Normal and Standard Time Before Improvement	47
Table 5.2	Grading Type by Size and Weight	49
Table 5.3	Mushroom's Matrix Grading Schedule	49
Table 5.4	Matrix Assessment Schedule	50
Table 5.5	Product Specification	53
Table 5.6	Weight Measuring Process Time	58
Table 5.7	Normal Time.	59
Table 5.8	Standard Time	59

LIST OF ABBREVIATIONS

IKS - Industri Kecil Sederhana

PTS - Predetermined Time Standard

TMU - Time Measure Unit

PSM - Project Sarjana Muda

FYP - Final Year Project

LED - Light Emitting Diode

CHAPTER 1 INTRODUCTION

1.0 Introduction

1.1 Background

At present, each industry will do their best to achieve a remarkable level in their respective sectors and it become a new competitive era. Caused of that desired, there a lot of method been provided which related to the associate with their field and requirement. It is very clear to see that every industries all over the world, it sall about quality, productivity and profit. According to the Benjamin W. Niebel (1993), about a decade ago, only a few industries get involved in the competition particularly like electronics and automotive industries. But now, this competition was spread to the world wide. In order to increase these matters, they must have a very good method to be applied on their sectors to fulfill the requirement.

One of the best methods to help any industries to increase their productivity is motion and time study method, especially stopwatch time study. Time study method is founded by Frederick Winslow Taylor in 1881 while associated with Midvale Steel Company in U.S.A that time. The method have been developed and expended by Frank and Lilian Gilbreth and they are also considered as founders of modern motion and time study techniques.

Time study method not only limited to the huge and established industries such as manufacturing, production, fabricating, supplying and others huge application. This method also can be applied to the average and small industries (Industri Kecil Sederhana – IKS) such as agriculture, farming, packaging, food and many more. In order to improve the productivity of IKS, they also can implement the time study method as well.

Regarding to the agriculture and packaging industries, times become one of the important matter to be concern to ensure that the product they produce can hit the target in terms quantity and quality. Because of this sector can be categorized as small industries, these factors become priority to be considered. Time study method can be conducted into this industry either to help the industries to achieve the target or to improve their productivity.

Time study also involve of the criteria of designing and creating. Continuity from the time study that been applied, we also can create a guideline like scheduling to achieve the objective of time study. Due to the designing, may we can comes with a new design of tools or machine that van be used in time applied the time study method together with the guideline.

1.2 Problem Statement

One of the key aspects in winning the hearts of customers is packaging technique. As we know, appearance is the most first thing that customers and users will considered compared to price and quality. That is why good packaging techniques of any product to sell must get a good feedback and thus get a better return.

For the agriculture sector like mushroom industry also involve packaging process in their business flow. During the mushroom"s packaging process, there is an issue about less of satisfactions due to the mix size of the mushroom in one package. This happened because diversity of needs and interest of those customers about mushroom size. This matter will affect the packaging quality and also the level of customer's satisfactions and it definitely will give bad effect to the business.

Due to the mentioned problem as above, it might caused by another problem such as the tools that the workers use during the packaging is not effective to fulfill the customers need and requirement. The workers do the packaging process by manually, so the process of selected the mushroom is been done by randomly pick based on their visual inspection and experience in packaging. Every package will consist of different quantity and size of mushroom. Such differences contribute to customer's dissatisfaction.

1.3 Objectives of Project

The project is intended to be carried out because of:

- To analyze the mushroom"s production process flow using Time Study method.
- ii. To propose solution for problems identified.
- iii. To improve the process of packaging products.

1.4 Project Scope

To ensure that all project objectives are achieved, the following are several important elements that must be followed during the project:

- i. The study of this project will be conducted at mushroom industry.
- ii. The study was undertaken using the Time Study Method which is used stopwatch time study technique.

CHAPTER 2 LITERATURE REVIEW

2.0 Literature Review

2.1 Introduction

One of the oldest and evergreen fundamental methods ever used to get result of increased in productivity and quality as well was time study method. This method focuses on whole aspect of one complete working process due to time study and motion that involve during the process. Since the method almost cover all important aspects, the history of time study so into the most useful tools in manufacturing industries.

Since this project using the method of time study, it will be based on the actual research and approach. Most of the source used in this project came from reliable and trustworthy sources which is including of journals, books and articles. Regarding to the time study method, there are a lot of techniques consist but the project research only focus on one method. The method is stopwatch time study and it been chosen for this project because of it compliance with the selected industry. Effective approach by this method would provide a success to improve working flow process, quality of packaging and productivity of chosen industry, mushroom industry.

2.2 Philosophy of Time Study

According to the Benjamin W. Niebel (1993), time study is often referred to as work measurement. It is involves the technique of an allowed time standard to perform a given task, based on the measurement of the work content of the prescribed method, with due allowance for fatigue and for personal and unavoidable delays. Time study analysts use several techniques to establish a standard: a stopwatch time study, computerized data collection, standard data, fundamental motion data, work sampling and estimates based on historical data. Each of these techniques has application under certain conditions. Time study analysts must know when it is best to use a certain technique and then use that technique wisely and correctly.

Referring to Meyers (2002), time standard can be defined as "the time required to produce a product at a work station with the following three conditions: a qualified, well-trained operator, working at a normal pace and doing a specific task". The three conditions are explained as below:

i. A Qualified, Well-trained Operators

Experience is usually what makes a qualified, well-trained operator and time on job is the indication of experience. The time required to become qualified varies with the job and person. The greatest mistake ever made by new time study personnel is time studying someone too soon. A good rule of thumb is to start with a qualified, fully trained person and to give that person a fortnight on the job prior to the time study. One new job or task, predetermined time study systems are used. These standards seem hard to achieve at first because the time are set for qualified, well-trained operator.

ii. Working at a Normal Pace

Only one time standards can be used for each job, even though personal differences of operators caused different results. A normal pace is usually comfortable for most people.

iii. Doing a Specific Task

It is a detail description of what must be accomplished. The description should include the prescribed work method, material specification, the tools and equipment being used, the position of incoming and outgoing material and additional requirement like safety, quality, housekeeping and maintenance task.

Time study always played a role of work measurement and involving a technique of establishing an allowed time standard to perform a given task, based on the measurement of the work content of the prescribed method and with due allowance for fatigue, personal and unavoidable delays. Basically, time study is used to determine the time required by a qualified well-trained operators working at a normal pace and do the specific task. The result of study time is the time that a person suited to do the job and fully trained on specific method. The job needs to be performed if he/she works at a normal or standard tempo. This kind of time called the standard time of operation. Time study is consisting of four parts:

- i. Developing a preferred method.
- ii. Standardizing the operation.
- iii. Determining the time standard.
- iv. Training the operator.

2.3 Objectives of Time Study

According to the Benjamin W. Niebel (1992), the principles objective of time study are to increase productivity and product reliability and lower unit cost, thus allowing more quality goods and/or services to be produced for more people. The ability to produce more or less will result in more jobs for more people for a greater number of hours per year.

Only through the intelligent application of the principles of method and time study can producer of goods and services increase while, at the same time, the purchasing potential of all consumers grows. Through these principles unemployment and relief rolls can be minimized, thus reducing the spiraling cost of economic support to non producers. Corollaries that apply to the principal objectives are to:

- i. Minimize the time required to perform task.
- ii. Continually improve the quality and the reliability of the products and services.
- iii. Conserve resources and minimize cost by specifying the most appropriate direct and indirect materials for the production of goods and services.
- iv. Produce with a concern for the availability of power.
- v. Maximize the safety, health and well being of all employees.
- vi. Produce with and increasing concern to protect our environment.
- vii. Follow a human program of management that results in job interest and satisfaction for each employee.