REAL-TIME DIGITAL CLOCK WITH VOICE

NORIDAH BINTI ISHAK

ŝ,

This report is submitted in partial fulfillment of the requirement for the award of Bachelor of Electronic Engineering (Industrial Electronic) With Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > MEI 2008

C Universiti Teknikal Malaysia Melaka

FAK Tajuk Projek : Sesi Pengajian :	UNIVERSTI TEKNIKAL MALAYSIA MELAKA ULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II REAL-TIME DIGITAL CLOCK with VOICE 2004-2008
Saya NORIDAH BI	INTI ISHAK
mengaku membenarkar syarat kegunaan seperti	n Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat- i berikut:
1. Laporan adalah ha	kmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan diber	narkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan diber	narkan membuat salinan laporan ini sebagai bahan pertukaran antara
institusi pengajian	tinggi.
4. Sila tandakan (√):
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
J TIDAK TI	ERHAD
	Disahkan oleh:
TANDATAN	GAN PENULIS) (COP DAN TANDATANGAN PENYELIA)
Alamat Tetap: 754-A, JALA 83000 BATT BATU PAH	IN TALIB ABU, UPAHAT, AT, JOHOR SYAFEEZA BT AHMAD PA 7ZI Pensyarah Fakulti Kej Elektranik dan Kej Komputer (FKEKK), Universiti Teknikai malaysia Melaka (u IeM), Karung Berkunci 1200, Ayer Keroh, 75450 Melaka
Tarikh: 5 MAY 2008	Tarikh: 9/5/2008

C Universiti Teknikal Malaysia Melaka

"I hereby declare that this report is the result of my own work except for quotes as cited in the references"

Signature	
Author	: NORIDAH BINTI ISHAK
Date	: 5 MAY 2008

C Universiti Teknikal Malaysia Melaka

"I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electronic (Industrial Electronics) With Honours."

ŧ,

: fuz
: CIK SYAFEEZA BINTI AHMAD RADZI
: 7 MAY 2008

iv

I would like to dedicate this thesis to my family, my fiancée and everyone, whose encouragement and support with great help in completing it.

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

Assalammualaikum, I'm so grateful to the God because with the blessing of God I can finish my report successfully. Thanks you very much to my family especially my mother and father that always giving me their support, love you so much. A Big thank you to my PSM Supervisor, Miss Syafeeza Bte Ahmad Radzi because help me so much to make sure my report is follows the procedure and finished by the time. Even though my project not successful and achieve the target, she always give me moral support to finish this project. Without her guidance and advice I cannot finished my report successfully. Here I also want to thank you to my beloved fiancée Mohd Azmi Bin Omar that always give me moral support and advice when I need his help. Last but not least, thanks you to the people who are involved whether directly or indirectly while the report is still in process until it is finished.

Thank you,

ABSTRACT

This project use DS1307 Serial Real-Time Clock and ISD2590 single-chip record and playback voice. LCD are uses to display seconds, minutes, hours, days, date, months and year information. DS1307 Serial Real-Time Clock is a low-power; full binary-coded decimal (BCD) clock/calendar plus 56 bytes of NV SRAM. Address and data are transferred serially via 2-wire, bi-directional bus. The clock/calendar provides second, minutes, hours, day, date, months and year information. The end of the month date is automatically adjusted for months with fewer than 31 days, including corrections for leap years. The clock operates in either 24-hour or 12-hour format with AM/PM indicator. The DS1307 has a build-in power senses circuit that's detects power failures and automatically switches to the battery supply. The ISD2590 have benefit of Winbond's ChipCorder technology is the use of on-chip nonvolatile memory, providing zero-power message storage. The massage is retained for up to 100 years typically without power. In addition, the device can be re-recorded typically over 100,000 times. It's designed to be used in microprocessor or microcontroller-based system. RTC with voice will display time, calendar, and voice to inform the time in each hour and any time when a switch button is pressed.

ABSTRAK

Project ini menggunakan 12C Jam Masa Sebenar (DS1307) dan juga menggunkan IC Merekod dan Memainkan semula Rakaman Suara (ISD2590). LCD digunakan dalam projek ini adalah untuk memaparka hari, jam, minit, saat, tarikh beserta dengan tahun. DS1307 Jam Sebenar bersiri adalah kerkuasa rendah, kod penduaan dan persepuluhan yang penuh, jam atau kelandar ditambah dengan 56 bit SRAM yang tidak cepat berubah. Ia dihantar melalui dua arah bermakna alamat dan dihantar secara bersiri melalui IC. Jam atau kelandar mengandungi maklumat mengenai saat, minit, jam, tarikh, bulan dan tahun. Spesifikasi bagi RTC ini adalah RTC ini menggunakan penyusunan Mikroelektronik C V5.0.0.3.0. ISD 2590 menghasilkan kualiti yang tinggi, berkuasa rendah dan merupakan rakaman dan memainkan suara dalam masa 2 hingga 3 minit. Ia dilengkapi dengan CMOS yang mengandungi pengayun, penapis, pengayun audio dan juga mengurangkan bunyi bising pada suara semasa merakam dan juga memainkan semula. PIC16f877 digunakan sebagai sasaran semula kepada PIC yang lain yang mempunyai input analog ANO. Spesifikasi jam kristal jenis 220ppm digunakan sebagai ketetapan. RTC dengan suara ini akan memaparkan keluaran digit pada LCD dan akan mengeluarkan suara pada setiap jam dan mempunyai satu butang yang mana apabila ditekan akan mengeluarkan suara berpandukan keluaran digit pada LCD.

viii

TABLE OF CONTENT

CH	APT	ER

1

CONTENT

PROJECT TITLE	i
PROJECT APPROVAL	ii
DECLAIRATION	iii
SUPERVISOR DECLAIRATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENT	ix
LIST OF FIGURE	xiii
LIST OF TABLE	XV
LIST OF ABBREVIATION	xvi
LIST OF APPENDIX	xviii

INTRODUCTION

1.1 PROJECT BACKGROUND	1
1.2 OBJECTIVE	2
1.3 PROBLEM STATEMENT	3
1.4 SCOPE AND ORGANIZATION	4
1.5 OVERVIEW PROJECT	4
1.6 THESIS OUTLINE	5

PAGE

LITERATURE REVIEW

2.1 PIC16F877	6
2.1.1 PIN DIAGRAM	7
2.1.2 MICROCONTROLLER CORE FEATURES	7
2.1.3 DATA MEMORY ORGANIZATION	8
2.1.4 PROGRAM MEMORY PAGING	8
2.1.5 READING THE FLASH PROGRAM	
MEMORY	9
2.1.6 WRITING TO THE FLASH PROGRAM	
MEMORY	9
2.1.7 INPUT OUTPUT PORTS	10
2.2 DS1307	11
2.3 PIC ICSP	12
2.3.1 PIC ICSP SIGNAL	13
2.3.2 VPP SIGNAL	13
2.3.3 VDD/VCC SIGNAL	13
2.3.4 GROUND SIGNAL	14
2.3.5 PGC AND PGD SIGNALS	14
2.4 ISD2590	14
2.5 COMPONENTS	15
2.6 DEVELOPMENT LANGUAGES	17
2.6.1 ASSEMBLY LANGUAGE (ASM)	17
2.6.2 BASIC	18
2.6.3 C LANGUAGE	18
2.7 PROGRAMMER	18

METHODOLOGY

3.1 METHODOLOGY	20
3.2 CIRCUIT PROCESS	21
3.2.1 DS1307	21
3.2.2 CRYSTAL	22
3.2.3 PIC16F877	22
3.2.4 ISD2590	23
3.2.5 INPUT KEYS	24
3.2.5.1 INPUT KEYS FUNCTION	24
3.2.6 SYSTEM OVERVIEW (VOICE PLAYBACK)	25
3.2.7 INTERFACE PIC16F877 with ISD 2590	26
3.3 PROCESSING THE EXPLANATION OF	
DIGITAL CLOCK	27
3.3.1 CLOCK FLOW CHART	27
3.3.2 I ² C DATA BUS	27
3.3.3 INITIALIZATION PROCESS	28
3.3.4 VOICE PLAYBACK	31
3.4 PROGRAMMING WORKFLOW	32

RESULT AND ANALYSIS

4.1 PROJECT RESULT	33
4.1.1 POWER SUPPLY CIRCUIT	34
4.1.2 CLOCK CIRCUIT	35
4.1.3 CONTROLLER CIRCUIT WITH LCD	36
4.1.4 REAL TIME CIRCUIT	37
4.1.5 SIMULATION RESULT	38
4.1.6 VOICE RECORDING AND PLAYBACK	39
4.2 STEP TO INSTALL VOICE IN ISD2590	42

4.3 PROGRAMMING PIC	44
4.3.1 PROGRAMMING OVERVIEW	44
4.3.2 STEP TO DESIGNING A PROJECT	45
4.8 DISCUSSION	48

FUTURE RECOMMENDATION AND CONCLUSION

5.1 FUTURE RECOMMENDATION	50
5.2 CONCLUSION	51

REFERENCE	6	53
APPENDIX		54

5

xii

LIST OF FIGURE

NO	TITLE	PAGE
2.1	Pin Diagram	7
2.2	DS1307 pin	11
2.3	Block diagram DS1307	12
2.4	ISD2590 pin	14
3.1	RTC Devices	21
3.2	Voice playback devices	25
3.3	Flow Chart	27
3.4	Initial stage	29
3.5	Set the 'setstop' and 'setstart'	29
3.6	'rtcclkout' assign	30
3.7	Voice flow chart	31
3.8	Workflow Diagram for complete operation of PIC	32
4.1	Power Supply Circuit	34
4.2	Clock circuit	35
4.3	Controlling Circuit	35
4.4	LCD Circuit	36
4.5	RTC circuit (PROTEUS)	37
4.6	RTC circuit (POSITIVE board)	38
4.7	Cording successful compile using HI-TECHC	38
4.8	Displaying appears in simulation	39
4.9	ISD 2590 circuit	40

4.10	PIC16f877 interface circuit	40
4.11	ISD 2590 application circuit	41
4.12	Voice and Record Playback circuit	41
4.13	Programming structure	44
4.14	Project Wizard dialog box	45
4.15	Step 1 (Select a device)	46
4.16	Step 2 (Select language toolsuite)	46
4.17	Step 3 (Create new project)	47
4.18	Example source code	47

LIST OF TABLE

NO	TITLE	PAGE
		*
2.1	Special Function Register	8
2.2	I/O pin	10
2.3	ICSP Connection	13
2.4	Components	15
3.1	Crystal Specification	22
3.2	Operational Modes	23
3.3	Initialized	24
3.4	PIC16F877 connection	26
4.1	Connection LCD Pin	37

XV

LIST OF ABREVATIATION

ADC ANALOG TO DIGITAL CONVERTER

- ALU ARITHMATHIC LOGIC UNIT
- BCD BINERY CODED DECIMAL
- CCW COUNTER CLOCKWISE
- CH CLOCK HERTZ
- CMOS COMPLEMENTARY METAL OXCIDE SEMICONDUCTOR

- CP CODE PROTECTION
- CPLD COMPLEX PROGRAMMABLE LOGIC DEVIVE

CW CLOCKWISE

- GND GROUND
- IC INTERGRATED CIRCUIT
- ICSP IN CIRCUIT SERIAL PROGRAMMING
- INDF INDIRECT FILE
- LED LIGHT EMMITING DIODE
- PC PROGRAM COUNTER
- PGC PHARMACOGENIMIC CLOCK
- PGD PHARMACOGENIMIC DATA
- PIC PROGRAMMABLE INTERFACE CONTROLLER
- PWRT POWER UP TIMER
- RTC REAL TIME CLOCK
- SQW SQUARE WAVE
- UL UNDERWRITERS LABORATORY
- USART UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER

C Universiti Teknikal Malaysia Melaka

ŧ.

xviii

LIST OF APPENDIX

NAME	TITLE	PAGE
		,
Α	REAL TIME SOURCE CODE	53
В	VOICE SOURCE CODE	79

ŝ

CHAPTER I

INTRODUCTION

1.1 PROJECT BACKGROUND

The standard clock is the clock for defining the standard second. The current standard second is defined to be the duration of 9,192,631,770 periods (cycles, oscillation, vibrations) of a certain kind of microwave radiation in the standard clock. The standard clock is used to fix the units of all lengths. The unit of length is depends on the unit of time. A real-time clock (RTC) is a computer clock or a digital clock (most often in the form of an integrated circuit chip) that keeps track of the current time even when the digital clock is turn off. RTC are also present in many embedded systems.

Real time clock run on the special battery that is not connected to the normal power supply. In contrast, clocks that are not real-time do not function when the digital clocks is off. RTC should not be confused with the real-time computing. It also shouldn't be confused with CPU clock because the CPU clock regulates the execution of instructions.

Primary lithium coin cell are commonly used for RTC and memory backup. Lithium cells have a high energy density, thus taking up a small amount of room on a PC board. Self-discharge near room temperature and below is typically less than 1% per year. At temperature above about +60°C, self-discharges quickly increases. Lithium primary cells are usually sized to power the RTC for the expected life of the product.

The DSI307 is a low-power clock/calendar with 56 byte of battery-backed SRAM. The clock/calendar provide seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for month with fewer than 31 days, including corrections for leap year. The DSI370 operates as a slave device on the 12C bus. Access is obtained by implementing a START condition and providing a device identification correction followed by a register address. Subsequent registers can be accessed sequentially until a STOP condition is executed. When VCC falls below 1.25 x VBA, the devices terminates and access in progress and resets the devices address counter. Inputs to the devices will not be recognized at this time to prevent erroneous data from being written to the devices from an out-of tolerance system. When VCC falls below VBAT, the devices switches into a low-current battery-backup mode. Upon power-up, the device switches from battery to VCC when VCC is greater than VBAT +0.2V and recognizes inputs when VCC is greater than 1.25 x VBAT.

In addition to a visual indication of time and alarm events, the ETL Clock reminder can announce the time or alarms using a recorded voice message. The unit can record up to 90 seconds of audio utilizing an ISD2590 Series. This audio reproduction method is preferable since the recorded audio can be in any language and can be from a recognized source

1.2 OBJECTIVE

This *Real-time digital clock with voice* project is to make easier lifestyle at home, office and everywhere. This standard desk clock has function such as time (hours, minute, second), date, month and years. User can see all this on the same time and can cut the budget to buy a calendar and to see the date and years. Besides that, this clock also has voice to pronounce the time, date, month and year in each hour. This voice function can give an advantage to blind people to know time, date and years at anytime. With this standard clock, it also can give a guide to children underage to learn about how to read time, date and years. This project gives extra knowledge to student because Programming Integrated Circuit (PIC) is used to link all the function. Before using this PIC, we need to know the programming language that can be supported because programming language is one of the important sources to program the PIC.

1.3 PROBLEM STATEMENT

Nowadays, many people develop a new device that can make human life simpler as they need. This real time clock is one of the devices that can make human life simpler because there is no standard desk clock that have more function accept to see the time. User need to buy a calendar and watch in separately and it might be more expensive and waste time. Beside that, today no specification clock for the blind people and they need to ask someone when they need to know what time it is.

ŝ,

1.4 SCOPE AND ORGANIZATION

The main purpose of this project is to build a standard desk clock. It has 8 addresses and each address have their register function such as SECOND 0-59, MINUTES 0-59, HOURS 0-24 or 1-12, DATE 1-31, MONTH 1-12, YEAR 1-99 and control. The RTCV has mode button to cycles the display showing the different data

after each button press. The following sequence is minutes, seconds, hour-minutes, datemonth and '20' years. For the specification, this RTCV used Microelectronic C compiler as a compiler. The 16f877 is to retarget able to other PIC that have analogue input ANO. For the accuracy, watch crystal specification typically 20 ppm will be used. Switching between input and output to read analogue or drive display using 12C routines.

1.5 OVERVIEW OF PROJECT

REAL-TIME DIGITAL CLOCK WITH VOICE is build to show the time, date by voice using a PIC as a main device. The clocks will be controlled by five input keys which are all connected to a single analogue input pin. This pin also drives one of the seven segment display LED, so it has to be switched between input to read the analogue voltage and output to drive the LED. This clock is Real Time Clock with Voice. Voice will be produced in each hour or anytime by linking the voice command with the command of the time and date. Without any supply through to the clock it still follows the real time because it has a memory and the Lithium Battery to run the clock.

1.6 THESIS OUT LINE

Chapter I explain about the background, objective of the project, scope of the project and problem that must be solve while doing this project.

In Chapter II, the explanation is focusing about the components that have been use in the circuit to create a standard desk clock. This chapter also explains the function of each component in detail.

In Chapter III, the explanation is about the methodology of the project. The explanation is more the operation of the digital clock, clock processing and flow chart of digital clock before creating a PIC program.

Chapter IV explains about the simulation and the result from the simulation. Before simulating the circuit, the source code programming for PIC 16f877 must be burn into the PIC using the PIC burner.

Finally, the last chapter explains about the future recommendation and the conclusion for the project.

2.1.1 PIN DIAGRAM

Figure 2.1 Pin Diagram

2.1.2 MICROCONTROLLER CORE FEATURES

- High performance RISC CPU
- Only 35 single word instruction to learn
- All single cycles instruction except for program branches which are two cycles
- Operating speed: DC-20Mhz clock input Dc- 200ns instruction cycle
- · Direction, indirect and relative addressing modes
- Power-on reset (POR)
- Power-up Timer (PWRT) and oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code protection
- Power saving SLEEP mode